e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in variable and difficult weather conditions, including during snow and rain read...

magnets with holders

Holders with magnets can be used to enhance manufacturing, underwater discoveries, or finding meteorites from gold read...

Shipping is always shipped on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow! Bestseller

MW 15x1 / N38 - neodymium magnet

cylindrical magnet

catalog number 010026


diameter Ø

15 mm [±0,1 mm]


1 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.83 kg / 8.14 N

magnetic induction ~

81.93 mT / 819 Gs

max. temperature

≤ 80 °C

0.57 PLN gross price (including VAT) / pcs +

0.46 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.46 PLN
0.57 PLN
price from 1500 pcs
0.41 PLN
0.50 PLN
price from 3000 pcs
0.40 PLN
0.49 PLN

Don't know what to choose?

Call us tel: +48 888 99 98 98 or contact us through form on our website. You can check the lifting capacity as well as the appearance of neodymium magnets in our magnetic mass calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 15x1 / N38 ↑ axial

Characteristics: cylindrical magnet 15x1 / N38 ↑ axial
catalog number
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
diameter Ø
15 mm [±0,1 mm]
1 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.83 kg / 8.14 N
magnetic induction ~ ?
81.93 mT / 819 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
1.33 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
remenance Br [Min. - Max.] ?
remenance Br [Min. - Max.] ?
coercivity bHc ?
coercivity bHc ?
actual internal force iHc
≥ 12
actual internal force iHc
≥ 955
energy density [Min. - Max.]
BH max MGOe
energy density [Min. - Max.]
BH max KJ/m
max. temperature
≤ 80

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Vickers hardness
Curie Temperature TC
312 - 380
Curie Temperature TF
593 - 716
Specific resistance
Bending strength
Compressive strength
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
Young's modulus
1.7 x 104
Cylindrical Neodymium Magnets i.e. MW 15x1 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently employed in devices that need powerful holding. The standard temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 15x1 / N38 and a magnetic lifting capacity of ${capacity} kg weighs only ${weight} grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in many applications, they can also pose certain risk. Because of their significant magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin or other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to protect them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Wide application in modern technologies – are used in HDD drives, electric drive mechanisms, medical devices or other modern machines.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets can be dangerous, in case of ingestion, which becomes significant in the aspect of protecting young children. Additionally, miniscule components of these devices have the potential to be problematic in medical diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets may crack or crumble with careless joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Neodymium magnets are highly fragile, they easily break as well as can become damaged.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98