e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F400 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult weather, including during snow and rain check...

magnets with holders

Magnetic holders can be applied to improve manufacturing, underwater discoveries, or finding meteors from gold see...

Enjoy delivery of your order on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MW 12x8 / N38 - neodymium magnet

cylindrical magnet

catalog number 010022

GTIN: 5906301810216

5.0

diameter Ø

12 mm [±0,1 mm]

height

8 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

5.31 kg / 52.07 N

magnetic induction ~

495.50 mT / 4,955 Gs

max. temperature

≤ 80 °C

4.00 gross price (including VAT) / pcs +

3.25 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
3.25 ZŁ
4.00 ZŁ
price from 185 pcs
3.05 ZŁ
3.75 ZŁ
price from 677 pcs
2.86 ZŁ
3.52 ZŁ

Don't know what to choose?

Give us a call tel: +48 22 499 98 98 or write via contact form on our website. You can check the power as well as the appearance of neodymium magnets in our magnetic mass calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 12x8 / N38 ↑ axial

Characteristics: cylindrical magnet 12x8 / N38 ↑ axial
Properties
Values
catalog number
010022
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
12 mm [±0,1 mm]
height
8 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
5.31 kg / 52.07 N
magnetic induction ~ ?
495.50 mT / 4,955 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
6.79 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets min. MW 12x8 / N38 are magnets created of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which outperform traditional iron magnets. Because of their power, they are frequently employed in products that require strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 12x8 / N38 with a magnetic lifting capacity of 5.31 kg has a weight of only 6.79 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the latest information as well as offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are useful in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin and other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Find suggested articles

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources very well,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in modern technologies – find application in HDD drives, electric drive mechanisms, medical devices or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Possible danger associated with microscopic parts of magnets are risky, in case of ingestion, which is crucial in the context of child safety. Furthermore, miniscule components of these devices can complicate diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Magnets made of neodymium are especially fragile, which leads to their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98