tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful magnet? Magnetic holders in airtight, solid steel enclosure are ideally suited for use in variable and difficult weather conditions, including in the rain and snow more...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater discoveries, or searching for space rocks from gold read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow! Bestseller

MW 12x1 / N38 - neodymium magnet

cylindrical magnet

catalog number 010015

GTIN: 5906301810148

5.0

diameter Ø

12 mm [±0,1 mm]

height

1 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.66 kg / 6.47 N

magnetic induction ~

101.90 mT / 1,019 Gs

max. temperature

≤ 80 °C

0.57 PLN gross price (including VAT) / pcs +

0.46 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.46 PLN
0.57 PLN
price from 1920 pcs
0.41 PLN
0.50 PLN
price from 3840 pcs
0.40 PLN
0.49 PLN

Want to bargain?

Call us tel: +48 22 499 98 98 or write through contact form on our website. You can check the lifting capacity and the appearance of neodymium magnets in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 12x1 / N38 ↑ axial

Characteristics: cylindrical magnet 12x1 / N38 ↑ axial
Properties
Values
catalog number
010015
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
12 mm [±0,1 mm]
height
1 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.66 kg / 6.47 N
magnetic induction ~ ?
101.90 mT / 1,019 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.85 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 12x1 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their power, they are frequently used in devices that need powerful holding. The typical temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 12x1 / N38 with a magnetic lifting capacity of 0.66 kg weighs only 0.85 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information as well as promotions, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin and other materials, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

Compilation of suggested goods

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in advanced technologically fields – are utilized in hard drives, electric motors, medical apparatus and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Potential hazard to health from tiny fragments of magnets are risky, in case of ingestion, which is crucial in the aspect of protecting young children. It's also worth noting that tiny parts of these magnets have the potential to be problematic in medical diagnosis when they are in the body.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnets are extremely fragile, leading to their cracking.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98