tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in challenging weather conditions, including in the rain and snow check...

magnetic holders

Magnetic holders can be applied to enhance production, underwater exploration, or searching for meteors made of metal more information...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MW 10x4 / N38 - neodymium magnet

cylindrical magnet

catalog number 010010

GTIN: 5906301810094

5.0

diameter Ø

10 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.21 kg / 21.67 N

magnetic induction ~

386.91 mT / 3,869 Gs

max. temperature

≤ 80 °C

1.05 PLN gross price (including VAT) / pcs +

0.85 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.85 PLN
1.05 PLN
price from 1125 pcs
0.75 PLN
0.92 PLN
price from 2250 pcs
0.72 PLN
0.89 PLN

Want a better price?

Give us a call tel: +48 888 99 98 98 or contact us through contact form on the contact page. You can check the lifting capacity and the shape of magnet in our power calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x4 / N38 ↑ axial

Characteristics: cylindrical magnet 10x4 / N38 ↑ axial
Properties
Values
catalog number
010010
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.21 kg / 21.67 N
magnetic induction ~ ?
386.91 mT / 3,869 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
2.36 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 10x4 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform ordinary ferrite magnets. Because of their power, they are often employed in products that require powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 10x4 / N38 and a magnetic strength ${capacity} kg weighs only ${weight} grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the website for the latest information and promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are practical in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin or other materials, especially be careful with fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources extremely well,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – are utilized in HDD drives, electric drive mechanisms, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger arising from small pieces of magnets pose a threat, when accidentally ingested, which becomes significant in the context of child safety. Additionally, miniscule components of these products can complicate diagnosis in case of swallowing.

Precautions

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are noted for being fragile, which can cause them to shatter.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98