e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong magnet? Holders with magnets in solid and airtight steel enclosure are perfect for use in challenging climate conditions, including during snow and rain see more...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater exploration, or locating space rocks from gold more...

Shipping is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days! Bestseller

MW 10x2 / N38 - neodymium magnet

cylindrical magnet

catalog number 010006

GTIN: 5906301810056

5.0

diameter Ø

10 mm [±0,1 mm]

height

2 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.11 kg / 10.89 N

magnetic induction ~

230.11 mT / 2,301 Gs

max. temperature

≤ 80 °C

0.43 gross price (including VAT) / pcs +

0.35 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.35 ZŁ
0.43 ZŁ
price from 2000 pcs
0.31 ZŁ
0.38 ZŁ
price from 4000 pcs
0.30 ZŁ
0.37 ZŁ

Don't know what to buy?

Give us a call tel: +48 888 99 98 98 or contact us through contact form on the contact page. You can check the lifting capacity as well as the appearance of magnet in our magnetic mass calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x2 / N38 ↑ axial

Characteristics: cylindrical magnet 10x2 / N38 ↑ axial
Properties
Values
catalog number
010006
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
2 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.11 kg / 10.89 N
magnetic induction ~ ?
230.11 mT / 2,301 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1.18 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 10x2 / N38 are magnets created of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform ordinary iron magnets. Because of their strength, they are frequently used in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet designated MW 10x2 / N38 and a magnetic strength 1.11 kg weighs only 1.18 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the website for the current information and promotions, and before visiting, we recommend calling.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to damaging skin as well as other surfaces, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as nickel, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

List recommended items

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources very well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Key role in modern technologies – are utilized in hard drives, electric drive mechanisms, medical devices or other modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk arising from small pieces of magnets are risky, if swallowed, which becomes significant in the context of children's health. Furthermore, small elements of these magnets can hinder the diagnostic process after entering the body.

Precautions

 Keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98