tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather, including during rain and snow see...

magnets with holders

Holders with magnets can be used to improve manufacturing, exploring underwater areas, or finding space rocks made of metal more...

Shipping is shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow! Bestseller

MW 10x1.5 / N38 - neodymium magnet

cylindrical magnet

catalog number 010003

GTIN: 5906301810001

5.0

diameter Ø

10 mm [±0,1 mm]

height

1.5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

0.83 kg / 8.14 N

magnetic induction ~

178.06 mT / 1,781 Gs

max. temperature

≤ 80 °C

0.38 PLN gross price (including VAT) / pcs +

0.31 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.31 PLN
0.38 PLN
price from 2600 pcs
0.27 PLN
0.33 PLN
price from 5200 pcs
0.26 PLN
0.32 PLN

Want a better price?

Call us tel: +48 22 499 98 98 or contact us through contact form on the contact page. You can check the power and the appearance of neodymium magnet in our force calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 10x1.5 / N38 ↑ axial

Characteristics: cylindrical magnet 10x1.5 / N38 ↑ axial
Properties
Values
catalog number
010003
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
10 mm [±0,1 mm]
height
1.5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
0.83 kg / 8.14 N
magnetic induction ~ ?
178.06 mT / 1,781 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.88 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 10x1.5 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Because of their strength, they are frequently employed in devices that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet with the designation MW 10x1.5 / N38 and a magnetic strength 0.83 kg has a weight of only 0.88 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the latest information and promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are very practical in many applications, they can also pose certain dangers. Due to their strong magnetic power, they can attract metallic objects with significant force, which can lead to damaging skin and other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as gold, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Choose recommended products

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Key role in advanced technologically fields – are utilized in hard drives, electric drive mechanisms, medical equipment or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger associated with microscopic parts of magnets can be dangerous, when accidentally ingested, which is particularly important in the aspect of protecting young children. It's also worth noting that small elements of these magnets can hinder the diagnostic process in case of swallowing.

Be Cautious with Neodymium Magnets

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are especially delicate, resulting in their breakage.

Neodymium magnets are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98