tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid enclosure are perfect for use in difficult, demanding weather, including in the rain and snow read...

magnetic holders

Magnetic holders can be used to facilitate production processes, underwater exploration, or finding meteorites from gold more information...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MW 100x30 / N38 - neodymium magnet

cylindrical magnet

catalog number 010002

GTIN: 5906301810025

5.0

diameter Ø

100 mm [±0,1 mm]

height

30 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

165.88 kg / 1626.73 N

magnetic induction ~

318.96 mT / 3,190 Gs

max. temperature

≤ 80 °C

730.00 PLN gross price (including VAT) / pcs +

593.50 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
593.50 PLN
730.00 PLN
price from 2 pcs
522.28 PLN
642.40 PLN
price from 3 pcs
504.47 PLN
620.50 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or get in touch through form on the contact page. You can check the strength and the shape of magnet in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 100x30 / N38 ↑ axial

Characteristics: cylindrical magnet 100x30 / N38 ↑ axial
Properties
Values
catalog number
010002
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
100 mm [±0,1 mm]
height
30 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
165.88 kg / 1626.73 N
magnetic induction ~ ?
318.96 mT / 3,190 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1767.15 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Cylindrical Neodymium Magnets i.e. MW 100x30 / N38 are magnets created of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are often used in devices that require powerful holding. The typical temperature resistance of such magnets is 80°C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet named MW 100x30 / N38 and a magnetic strength ${capacity} kg has a weight of only ${weight} grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to check the site for the current information as well as offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin and other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to shield them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Significant importance in advanced technologically fields – find application in HDD drives, electric motors, medical equipment or other advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger arising from small pieces of magnets pose a threat, when accidentally ingested, which becomes significant in the aspect of protecting young children. Furthermore, tiny parts of these magnets can be problematic in medical diagnosis in case of swallowing.

Precautions with Neodymium Magnets

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are known for being fragile, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98