e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all "magnets" in our store are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong magnet? Magnetic holders in airtight and durable enclosure are perfect for use in variable and difficult weather conditions, including during rain and snow see...

magnets with holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or finding space rocks from gold more...

Order is shipped if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MPL 6x6x6 / N38 - neodymium magnet

lamellar magnet

catalog number 020175

GTIN: 5906301811817

1.0

length

6 mm [±0,1 mm]

width

6 mm [±0,1 mm]

height

6 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.84 kg / 27.85 N

magnetic induction ~

539.50 mT / 5,395 Gs

max. temperature

≤ 80 °C

0.90 PLN gross price (including VAT) / pcs +

0.73 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.73 PLN
0.90 PLN
price from 822 pcs
0.69 PLN
0.85 PLN
price from 3014 pcs
0.64 PLN
0.79 PLN

Do you have trouble in choosing?

Give us a call tel: +48 888 99 98 98 or get in touch via contact form on our website. You can check the lifting capacity and the shape of neodymium magnet in our magnetic calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 6x6x6 / N38 ↑ axial

Characteristics: lamellar magnet 6x6x6 / N38 ↑ axial
Properties
Values
catalog number
020175
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
6 mm [±0,1 mm]
width
6 mm [±0,1 mm]
height
6 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.84 kg / 27.85 N
magnetic induction ~ ?
539.50 mT / 5,395 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1.62 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets present a range of advantages compared to other magnet shapes, which make the best choice for many applications:
Contact Surface: Due to their flat shape, disc magnets provide a significant contact surface with other elements, which is beneficial in applications requiring a stronger magnetic connection.
Applications in Technology: They are often used in many devices, like sensors, stepper motors, or speakers, where a flat shape is essential for their operation.
Mounting: The flat form's flat shape facilitates mounting, especially when there's a need to adhere the magnet to another surface.
Design Flexibility: The disc shape of the magnets allows designers with significant flexibility in arranging them in constructions, which can sometimes be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of a disc magnet can offer better stability, minimizing the risk of sliding or rotating. However, it's important to remember that the optimal shape of a magnet is dependent on the particular use and requirements. In certain cases, other shapes, like cylindrical or spherical, may be more suitable.

List recommended items

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which enhances their versatility in applications.
  • Key role in modern technologies – are utilized in hard drives, electric motors, medical apparatus or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets can be dangerous, if swallowed, which is crucial in the aspect of protecting young children. Furthermore, miniscule components of these products have the potential to complicate diagnosis after entering the body.

Caution with Neodymium Magnets

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are characterized by their fragility, which can cause them to shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98