tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy powerful magnet? Magnet holders in airtight, solid steel casing are excellent for use in variable and difficult weather conditions, including during snow and rain more information...

magnets with holders

Holders with magnets can be applied to enhance production, underwater discoveries, or searching for space rocks from gold more...

Enjoy delivery of your order on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MPL 50x20x5 / N38 - neodymium magnet

lamellar magnet

catalog number 020473

GTIN: 5906301811930

5.0

length

50 mm [±0,1 mm]

width

20 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

12.49 kg / 122.49 N

magnetic induction ~

197.73 mT / 1,977 Gs

max. temperature

≤ 80 °C

18.94 PLN gross price (including VAT) / pcs +

15.40 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
15.40 PLN
18.94 PLN
price from 39 pcs
14.48 PLN
17.81 PLN
price from 143 pcs
13.55 PLN
16.67 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or write via contact form on our website. You can check the strength as well as the appearance of neodymium magnets in our force calculator force calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 50x20x5 / N38 ↑ axial

Characteristics: lamellar magnet 50x20x5 / N38 ↑ axial
Properties
Values
catalog number
020473
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
50 mm [±0,1 mm]
width
20 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
12.49 kg / 122.49 N
magnetic induction ~ ?
197.73 mT / 1,977 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
37.50 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets present a range of advantages compared to other magnet shapes, which make the best choice for various uses:
Contact Surface: Thanks to their flat shape, disc magnets provide a larger contact surface with adjoining parts, which is beneficial in applications needing a stronger magnetic connection.
Applications in Technology: These magnets are often utilized in various devices, like sensors, stepper motors, or speakers, where a flat shape is important for their operation.
Mounting: The flat form's flat shape facilitates mounting, particularly when there's a need to adhere the magnet to a surface.
Design Flexibility: The disc shape of the magnets gives designers with greater flexibility in arranging them in constructions, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of a disc magnet may offer better stability, reducing the risk of sliding or rotating. It should be noted that the optimal shape of a magnet depends on the particular use and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.

Compilation of suggested goods

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Significant importance in modern technologies – are utilized in hard drives, electric motors, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets pose a threat, when accidentally ingested, which is particularly important in the context of children's health. Furthermore, small elements of these magnets have the potential to be problematic in medical diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets jump and also clash mutually within a radius of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnetic are extremely fragile, leading to breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98