e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong neodymium magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow more...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater exploration, or finding meteors from gold read...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MPL 40x7x3 / N38 - neodymium magnet

lamellar magnet

catalog number 020162

GTIN: 5906301811688

5.0

length

40 mm [±0,1 mm]

width

7 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

3.96 kg / 38.83 N

magnetic induction ~

284.46 mT / 2,845 Gs

max. temperature

≤ 80 °C

2.45 PLN gross price (including VAT) / pcs +

1.99 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.99 PLN
2.45 PLN
price from 302 pcs
1.87 PLN
2.30 PLN
price from 1106 pcs
1.75 PLN
2.15 PLN

Do you have questions?

Give us a call tel: +48 888 99 98 98 or get in touch via form on our website. You can check the lifting capacity as well as the appearance of magnet in our force calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x7x3 / N38 ↑ axial

Characteristics: lamellar magnet 40x7x3 / N38 ↑ axial
Properties
Values
catalog number
020162
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
7 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
3.96 kg / 38.83 N
magnetic induction ~ ?
284.46 mT / 2,845 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
6.30 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets present a range of advantages compared to other magnet shapes, which make an excellent solution for numerous projects:
Contact Surface: Due to their flat shape, disc magnets provide a significant contact surface with other elements, which is beneficial in applications requiring a stronger magnetic connection.
Applications in Technology: The magnets are often used in different devices, like sensors, stepper motors, or speakers, where a thin and wide shape is important for their operation.
Mounting: This form's flat shape facilitates mounting, particularly when it's necessary to adhere the magnet to another surface.
Design Flexibility: The flat shape of the magnets allows designers with significant flexibility in placing them in devices, which can sometimes be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of a disc magnet can offer better stability, minimizing the risk of sliding or rotating. It should be noted that the optimal shape of a magnet depends on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more suitable.

Product suggestions

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources very well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in modern technologies – are utilized in computer drives, electric drive mechanisms, medical apparatus and very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets pose a threat, in case of ingestion, which is crucial in the context of child safety. It's also worth noting that small elements of these products can complicate diagnosis in case of swallowing.

Handle Neodymium Magnets Carefully

Neodymium magnetic are extremely delicate, they easily fall apart and can crumble.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

 It is important to keep neodymium magnets out of reach from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and clash mutually within a distance of several to almost 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98