tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather, including in the rain and snow more...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or searching for meteorites made of ore more information...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MPL 40x10x5x2[7/3.5] / N38 - neodymium magnet

lamellar magnet

catalog number 020397

GTIN: 5906301811909

5.0

length

40 mm [±0,1 mm]

width

10 mm [±0,1 mm]

height

5 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

7.90 kg / 77.47 N

magnetic induction ~

321.37 mT / 3,214 Gs

max. temperature

≤ 80 °C

9.93 PLN gross price (including VAT) / pcs +

8.07 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
8.07 PLN
9.93 PLN
price from 75 pcs
7.59 PLN
9.34 PLN
price from 273 pcs
7.10 PLN
8.73 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or write via form on our website. You can check the lifting capacity as well as the appearance of neodymium magnets in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x10x5x2[7/3.5] / N38 ↑ axial

Characteristics: lamellar magnet 40x10x5x2[7/3.5] / N38 ↑ axial
Properties
Values
catalog number
020397
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
5 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
7.90 kg / 77.47 N
magnetic induction ~ ?
321.37 mT / 3,214 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
0.15 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets offer a range of advantages in relation to other magnet shapes, which cause them to be an excellent solution for many applications:
Contact Surface: Due to their flat shape, disc magnets guarantee a significant contact surface with other elements, which can be beneficial in applications needing a stronger magnetic connection.
Applications in Technology: These magnets are often used in many devices, like sensors, stepper motors, or speakers, where a thin and wide shape is important for their operation.
Mounting: This form's flat shape makes mounting, especially when there's a need to adhere the magnet to another surface.
Design Flexibility: The flat shape of the magnets gives designers with greater flexibility in arranging them in devices, which can sometimes be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of a disc magnet may offer better stability, reducing the risk of sliding or rotating. However, it's important to remember that the optimal shape of a magnet is dependent on the specific project and requirements. In some cases, other shapes, like cylindrical or spherical, may be more suitable.

List recommended items

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose power over time. After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Key role in the industry of new technologies – find application in hard drives, electric drive mechanisms, medical devices and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, if swallowed, which becomes significant in the aspect of protecting young children. It's also worth noting that small elements of these products are able to be problematic in medical diagnosis in case of swallowing.

We Recommend Caution with Neodymium Magnets

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 Maintain neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnetic are noted for being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and also touch each other mutually within a distance of several to almost 10 cm from each other.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98