tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase strong magnet? Magnetic holders in solid and airtight enclosure are ideally suited for use in challenging weather, including during snow and rain read...

magnets with holders

Holders with magnets can be used to facilitate manufacturing, underwater discoveries, or searching for meteors from gold more information...

Shipping is shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

MPL 40x10x4x2[7/3.5] / N38 - neodymium magnet

lamellar magnet

catalog number 020151

no reviews

length

40 mm [±0,1 mm]

width

10 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

6.32 kg / 61.98 N

magnetic induction ~

275.57 mT / 2,756 Gs

max. temperature

≤ 80 °C

9.21 PLN gross price (including VAT) / pcs +

7.49 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
7.49 PLN
9.21 PLN
price from 81 pcs
7.04 PLN
8.66 PLN
price from 294 pcs
6.59 PLN
8.11 PLN

Don't know what to buy?

Give us a call tel: +48 22 499 98 98 or get in touch via form on the contact page. You can check the strength as well as the shape of neodymium magnet in our magnetic calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x10x4x2[7/3.5] / N38 ↑ axial

Characteristics: lamellar magnet 40x10x4x2[7/3.5] / N38 ↑ axial
Properties
Values
catalog number
020151
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
6.32 kg / 61.98 N
magnetic induction ~ ?
275.57 mT / 2,756 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
12.00 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets provide a range of advantages compared to other magnet shapes, which make them the ideal choice for various uses:
Contact Surface: Due to their flat shape, disc magnets provide a significant contact surface with other elements, which is beneficial in applications needing a stronger magnetic connection.
Applications in Technology: These magnets are often employed in various devices, such as sensors, stepper motors, or speakers, where a flat shape is essential for their operation.
Mounting: This form's flat shape makes mounting, particularly when it's necessary to adhere the magnet to a surface.
Design Flexibility: The flat shape of the magnets allows designers with significant flexibility in arranging them in devices, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of a disc magnet can provide better stability, reducing the risk of sliding or rotating. However, it's important to remember that the optimal shape of a magnet depends on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, might be a better choice.

Product suggestions

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which enhances their versatility in applications.
  • Significant importance in the industry of new technologies – are used in computer drives, electric drive mechanisms, medical devices and very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger arising from small pieces of magnets pose a threat, in case of ingestion, which is crucial in the context of child safety. Furthermore, tiny parts of these products are able to complicate diagnosis when they are in the body.

Exercise Caution with Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Neodymium magnets should not be around youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are fragile and can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98