tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in difficult weather, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to improve manufacturing, underwater exploration, or searching for space rocks from gold read...

We promise to ship your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MPL 40x10x4 / N38 - neodymium magnet

lamellar magnet

catalog number 020150

GTIN: 5906301811565

5.0

length

40 mm [±0,1 mm]

width

10 mm [±0,1 mm]

height

4 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

6.32 kg / 61.98 N

magnetic induction ~

275.57 mT / 2,756 Gs

max. temperature

≤ 80 °C

3.75 PLN gross price (including VAT) / pcs +

3.05 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
3.05 PLN
3.75 PLN
price from 197 pcs
2.87 PLN
3.53 PLN
price from 722 pcs
2.68 PLN
3.30 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or write via contact form on our website. You can check the strength and the shape of neodymium magnets in our power calculator magnetic mass calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 40x10x4 / N38 ↑ axial

Characteristics: lamellar magnet 40x10x4 / N38 ↑ axial
Properties
Values
catalog number
020150
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
40 mm [±0,1 mm]
width
10 mm [±0,1 mm]
height
4 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
6.32 kg / 61.98 N
magnetic induction ~ ?
275.57 mT / 2,756 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
12.00 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets present a range of advantages compared to other magnet shapes, which cause them to be an excellent solution for many applications:
Contact Surface: Thanks to their flat shape, disc magnets guarantee a significant contact surface with other elements, which can be beneficial in applications needing a stronger magnetic connection.
Applications in Technology: These magnets are often used in different devices, like sensors, stepper motors, or speakers, where a thin and wide shape is crucial for their operation.
Mounting: This form's flat shape makes mounting, particularly when there's a need to adhere the magnet to a surface.
Design Flexibility: The disc shape of the magnets gives designers with greater flexibility in placing them in devices, which can be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of a disc magnet may offer better stability, minimizing the risk of shifting or rotating. However, it's important to remember that the optimal shape of a magnet depends on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more suitable.

Recommended articles for purchase

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in advanced technologically fields – are used in computer drives, electric motors, medical apparatus or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk to health from tiny fragments of magnets can be dangerous, if swallowed, which is particularly important in the context of child safety. It's also worth noting that small elements of these devices can hinder the diagnostic process after entering the body.

Be Cautious with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Magnets made of neodymium are fragile as well as can easily crack and get damaged.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98