e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid enclosure are perfect for use in challenging weather conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be applied to enhance production, exploring underwater areas, or searching for meteorites from gold see...

Enjoy delivery of your order on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MPL 10x7x3 / N38 - neodymium magnet

lamellar magnet

catalog number 020115

GTIN: 5906301811213

5.0

length

10 mm [±0,1 mm]

width

7 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

1.98 kg / 19.42 N

magnetic induction ~

339.79 mT / 3,398 Gs

max. temperature

≤ 80 °C

0.63 PLN gross price (including VAT) / pcs +

0.51 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
0.51 PLN
0.63 PLN
price from 1177 pcs
0.48 PLN
0.59 PLN
price from 4314 pcs
0.45 PLN
0.55 PLN

Want to talk about magnets?

Give us a call tel: +48 22 499 98 98 or contact us via form on the contact page. You can check the strength and the appearance of neodymium magnets in our force calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: lamellar magnet 10x7x3 / N38 ↑ axial

Characteristics: lamellar magnet 10x7x3 / N38 ↑ axial
Properties
Values
catalog number
020115
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
length
10 mm [±0,1 mm]
width
7 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
1.98 kg / 19.42 N
magnetic induction ~ ?
339.79 mT / 3,398 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
1.58 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium disc magnets provide a range of advantages in relation to other magnet shapes, which make the ideal choice for numerous projects:
Contact Surface: Thanks to their flat shape, disc magnets provide a larger contact surface with other elements, which is beneficial in applications requiring a stronger magnetic connection.
Applications in Technology: These magnets are often utilized in various devices, like sensors, stepper motors, or speakers, where a flat shape is important for their operation.
Mounting: This form's flat shape makes mounting, particularly when it's necessary to adhere the magnet to another surface.
Design Flexibility: The disc shape of the magnets allows designers with significant flexibility in arranging them in constructions, which can sometimes be more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of a disc magnet may offer better stability, reducing the risk of shifting or rotating. However, it's important to remember that the optimal shape of a magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, might be a better choice.

Compilation of suggested goods

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time. After 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Key role in modern technologies – find application in HDD drives, electric drive mechanisms, medical equipment and other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger associated with microscopic parts of magnets can be dangerous, if swallowed, which becomes significant in the aspect of protecting young children. It's also worth noting that miniscule components of these magnets are able to hinder the diagnostic process after entering the body.

Handle with Care: Neodymium Magnets

Magnets made of neodymium are incredibly fragile, they easily crack and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets will jump and touch together within a radius of several to almost 10 cm from each other.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98