Glossary of magnetic terminology
How to navigate the world of neodymium magnets?
Welcome to our detailed glossary focused on the fascinating world of neodymium magnets. As a leading expert in providing excellent magnetic solutions, we are aware of how crucial it is to have a reliable information about the concepts in this unique field. This glossary has been meticulously prepared to serve as an key source of information for everyone who is curious about magnets – whether you are an expert, a hobbyist, or a person intrigued by the science of magnets.
In our glossary, you will find accessible and detailed explanations of key terms and ideas related to neodymium magnets. From the principles of magnetic fields and field intensity, to material characteristics and magnet types, each definition has been created with the aim of expand your understanding and make accessible even the intricate ideas. If you are exploring industrial applications, carrying out research projects, or simply curious magnetism, this glossary is here to help you navigate.
Explore the captivating world of neodymium magnets with ease. Broaden your understanding, gain fresh perspectives, and discover the applications of these innovative materials, reading about and theories that describe their operation and utility. Let this glossary your tool in navigating the ever-evolving world of magnetic technology.
Litera: A
B - magnetic induction,
μ0 - permeability of free space,
H - magnetic field strength,
M - magnetization.
Litera: B
μ0 - permeability of free space,
H - applied magnetic field,
M - magnetization.
Φ - magnetic flux,
A - air gap area.
Litera: C
M - magnetization,
χ - magnetic susceptibility.
kB - Boltzmann constant,
J0 - magnetic moment.
Litera: D
ρ = m / V, where:
ρ - density (in g/cm³ or kg/m³),
m - mass of the magnet (in grams or kilograms),
V - volume of the magnet (in cm³ or m³).
Consider a magnet with a mass of 150 g and a volume of 20 cm³, the density is:
ρ = 150 / 20 = 7.5 g/cm³.
Understanding density allows for better parameter selection in various applications.
Litera: E
Litera: F
Litera: G
Litera: H
Litera: I
Litera: K
Litera: L
Litera: M
It is expressed by the formula:
B = Φ / A
Where:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)
If the area is 0.05 m² and the magnetic flux is 0.002 Weber, the resulting flux density is 0.04 Tesla.
A high B value indicates a stronger magnetic field, essential in industrial and medical applications.
It is calculated using the equation:
BHmax = B × H
Where:
B: Magnetic flux density (Tesla)
H: Magnetic field strength (A/m)
For example, a magnet with B = 1 T and H = 600 kA/m achieves a BHmax of 600 kJ/m³.
BHmax is a critical parameter for evaluating magnet performance, particularly in projects requiring maximum energy efficiency.
Litera: N
Litera: O
Litera: P
The mathematical formula for permeance is expressed as:
P = (μ × A) / l
Where:
μ: Magnetic permeability of the material (H/m)
A: Cross-sectional area of the magnetic path (m²)
l: Length of the magnetic path (m)
For instance, a material with a large cross-sectional area and short magnetic path exhibits high permeance, making it efficient in magnetic applications.
Permeance is a key parameter in designing magnetic circuits, especially in applications requiring minimal magnetic losses.
F = B² × A / (2 × μ₀), where:
F - Pull force (in newtons, N).
B - Magnetic flux density at the magnet's surface (in teslas, T).
A - Contact area of the magnet with the material (in m²).
μ₀ - Permeability of free space (4π × 10⁻⁷ H/m).
Example: If the magnetic flux density is 1.2 T, and the magnet's contact area is 0.005 m², the pull force is:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.
Litera: R
The mathematical formula for reluctance is:
R = l / (μ × A)
Where:
R: Magnetic resistance (1/H)
l: Length of the magnetic path (m)
μ: Magnetic permeability of the material (H/m)
A: Cross-sectional area of the magnetic path (m²)
The larger the magnetic cross-section or permeability, the lower the magnetic resistance.
Reluctance is analogous to electrical resistance in DC circuits, making it a key parameter in designing magnetic circuits.
Litera: S
The formula for shear force is:
Fs = F × tan(θ)
Where:
F: Pull force (N)
θ: Angle of the contact surface (rad)
The greater the angle, the higher the force required to move the magnet.
This parameter plays a key role in applications such as magnetic mounts or sliding mechanisms.
Litera: T
Litera: W
m = ρ × V, where:
m - mass of the magnet (in grams or kilograms).
ρ - density of the magnet (typically 7.5 g/cm³).
V - volume of the magnet (in cm³ or m³).
Example: A magnet with a density of 7.5 g/cm³ and a volume of 10 cm³, the weight is:
m = 7.5 × 10 = 75 g.
Knowing the weight is crucial in projects where balance between mass and magnetic force is important.