MW 25x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010049
GTIN/EAN: 5906301810483
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.98 kg / 78.25 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.39 ZŁ z VAT / szt. + cena za transport
6.82 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać korzystając z
formularz zapytania
na naszej stronie.
Parametry oraz formę magnesu sprawdzisz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna produktu - MW 25x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010049 |
| GTIN/EAN | 5906301810483 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.98 kg / 78.25 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Poniższe dane stanowią bezpośredni efekt symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 25x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
uwaga |
| 1 mm |
2189 Gs
218.9 mT
|
7.21 kg / 15.91 lbs
7214.9 g / 70.8 N
|
uwaga |
| 2 mm |
2050 Gs
205.0 mT
|
6.33 kg / 13.95 lbs
6329.3 g / 62.1 N
|
uwaga |
| 3 mm |
1895 Gs
189.5 mT
|
5.41 kg / 11.93 lbs
5410.7 g / 53.1 N
|
uwaga |
| 5 mm |
1570 Gs
157.0 mT
|
3.72 kg / 8.19 lbs
3715.4 g / 36.4 N
|
uwaga |
| 10 mm |
890 Gs
89.0 mT
|
1.19 kg / 2.63 lbs
1192.8 g / 11.7 N
|
bezpieczny |
| 15 mm |
495 Gs
49.5 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
bezpieczny |
| 20 mm |
288 Gs
28.8 mT
|
0.12 kg / 0.28 lbs
124.8 g / 1.2 N
|
bezpieczny |
| 30 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.04 lbs
20.2 g / 0.2 N
|
bezpieczny |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 25x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| 1 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1442.0 g / 14.1 N
|
| 2 mm | Stal (~0.2) |
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.39 lbs
1082.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
238.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 25x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.39 kg / 5.28 lbs
2394.0 g / 23.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 25x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| 1 mm |
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| 2 mm |
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
| 3 mm |
|
5.99 kg / 13.19 lbs
5985.0 g / 58.7 N
|
| 5 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 10 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 11 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 12 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 25x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
OK |
| 40 °C | -2.2% |
7.80 kg / 17.21 lbs
7804.4 g / 76.6 N
|
OK |
| 60 °C | -4.4% |
7.63 kg / 16.82 lbs
7628.9 g / 74.8 N
|
|
| 80 °C | -6.6% |
7.45 kg / 16.43 lbs
7453.3 g / 73.1 N
|
|
| 100 °C | -28.8% |
5.68 kg / 12.53 lbs
5681.8 g / 55.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 25x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.03 kg / 35.34 lbs
3 871 Gs
|
2.40 kg / 5.30 lbs
2405 g / 23.6 N
|
N/A |
| 1 mm |
15.31 kg / 33.75 lbs
4 498 Gs
|
2.30 kg / 5.06 lbs
2296 g / 22.5 N
|
13.78 kg / 30.38 lbs
~0 Gs
|
| 2 mm |
14.49 kg / 31.95 lbs
4 377 Gs
|
2.17 kg / 4.79 lbs
2174 g / 21.3 N
|
13.05 kg / 28.76 lbs
~0 Gs
|
| 3 mm |
13.62 kg / 30.03 lbs
4 243 Gs
|
2.04 kg / 4.50 lbs
2043 g / 20.0 N
|
12.26 kg / 27.03 lbs
~0 Gs
|
| 5 mm |
11.79 kg / 26.00 lbs
3 948 Gs
|
1.77 kg / 3.90 lbs
1769 g / 17.4 N
|
10.61 kg / 23.40 lbs
~0 Gs
|
| 10 mm |
7.46 kg / 16.46 lbs
3 141 Gs
|
1.12 kg / 2.47 lbs
1120 g / 11.0 N
|
6.72 kg / 14.81 lbs
~0 Gs
|
| 20 mm |
2.40 kg / 5.28 lbs
1 780 Gs
|
0.36 kg / 0.79 lbs
359 g / 3.5 N
|
2.16 kg / 4.75 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.21 lbs
355 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
158 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 25x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 25x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.87 km/h
(6.35 m/s)
|
0.37 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.94 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.57 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.13 J |
Tabela 9: Parametry powłoki (trwałość)
MW 25x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 25x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 107 Mx | 131.1 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 25x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.98 kg | Standard |
| Woda (dno rzeki) |
9.14 kg
(+1.16 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Łatwopalność
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Potężne pole
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Ochrona urządzeń
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Rozruszniki serca
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Tylko dla dorosłych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
