magnesy neodymowe

Co to są magnesy neodymowe? Zacząłeś szukać silnych magnesów neodymowych stop N38? Kompletny wykaz dostępnych towarów znajduje się na spisie poniżej sprawdź ofertę magnesów

magnesy do poszukiwań F300 POWER z silnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes neodymowy do poszukiwań? Uchwyty magnetyczne w szczelnej, solidnej stalowej obudowie idealnie nadają się do stosowania w zmiennych i niedogodnych pogodowych warunkach, na przykład w czasie opadów śniegu i deszczu sprawdź...

magnesy z uchwytem

Uchwyty magnetyczne mogą być wykorzystywane do usprawniania produkcji, eksploracji podwodnych terenów lub do odnajdywania meteorytów ze złota. Mocowania to śruba 3x [M10] duży udźwig czytaj więcej nt....

Przesyłka zamówienia zawsze w dniu zakupu jeśli zamówienie złożone jest do 14:00 w dni pracujące.

logo Dhit sp. z o.o.

FAQ - pytania i odpowiedzi o magnesach neodymowych

Magnes neodymowy – co to jest i jak działa? Do czego używamy tych silnych magnesów?

Wejdź w świat magnesów neodymowych – odkryj ich niezwykłą moc i wszechstronne zastosowania! Znajdziesz tutaj dokładne odpowiedzi na pytania, które pojawiają się najczęściej, pomagając Ci lepiej zrozumieć, jak działają i do czego można je stosować. Dowiedz się, czemu magnesy neodymowe są uznawane za najsilniejsze na świecie i jak ich użycie może wpłynąć na Twoje projekty.

zastosowania magnesów neodymowych
zastosowania magnesów

Wysyłka, dostawa i zwroty

Znajdź odpowiedzi na pytania dotyczące metod wysyłki, kosztów, terminów dostawy oraz zasad zwrotów. Dowiedz się, jak bezproblemowo zarządzać zamówieniami online.

Akceptujemy przelewy tradycyjne, szybkie z mBanku oraz wysyłamy przesyłki za pobraniem. Więcej informacji znajdziesz w sekcji transport.
Zamówienia są wysyłane każdego dnia roboczego, a przesyłki docierają w ciągu 24-48 godzin od momentu potwierdzenia płatności. Przy płatności za pobraniem wysyłki nadawane są każdego dnia roboczego około godziny 16, paczkomaty o godzinie 17-tej.

Praca z magnesami neodymowymi

Dowiedz się, jak bezpiecznie i efektywnie obsługiwać magnesy neodymowe – od mocowania po separację i użytkowanie w projektach.

Magnesy samoprzylepne umożliwiają łatwe przymocowanie magnesu do powierzchni niemagnetycznych, takich jak drewno oraz inne materiały niemagnetyczne. Oferujemy zarówno magnesy w kształcie bloku, jak i dysku z samoprzylepną warstwą.

Zwykle magnesy te dostępne są w opakowaniach, gdzie jedna strona jest pokryta samoprzylepnym materiałem na biegunie południowym, a druga na biegunie południowym. Pozwala to na przyciąganie, gdy jest to potrzebne, np. do tworzenia zamknięć lub złącz.

Nasze magnesy samoprzylepne wykonane są z akrylowego kleju, który również jest dostępny osobno w postaci dwustronnych naklejek samoprzylepnych. Ten klej wysokiej wydajności zapewnia doskonałą wytrzymałość na ścinanie, zapobiegając przesunięciom i unoszeniu krawędzi.

Aby użyć magnesu, wystarczy odkleić papier z kleju i przykleić go w wybranym miejscu. Klej jest na tyle silny, że pozwala na ponowne ustawienie magnesu, co umożliwia dokładne dopasowanie do specyfikacji. Po umieszczeniu magnesu w odpowiednim miejscu, należy go mocno docisnąć, aby zapewnić równomierne przyleganie.

Rekomendujemy, aby po przyklejeniu magnesu poczekać 24-48 godzin, aby klej dobrze stwardniał przed nałożeniem jakiejkolwiek siły na połączenie.
Magnesy neodymowe to jedne z najsilniejszych dostępnych magnesów na rynku. Wyróżniają się wieloma zaletami, które sprawiają, że są chętnie wybierane w wielu zastosowaniach:

Kluczowe cechy:
Niezwykle silna siła magnetyczna, pozwalająca na skuteczne przyciąganie nawet z dużej odległości.
Kompaktowe rozmiary, co oznacza, że nawet małe magnesy mają ogromną moc.
Wysoka odporność na rozmagnesowanie w standardowych warunkach użytkowania.
Szeroki zakres zastosowań, od przemysłowych po codzienne użycie w domu.
Wymagają jednak ostrożności podczas użytkowania, aby uniknąć uszkodzeń lub obrażeń.
Aby wybrać najlepszy magnes, warto przeprowadzić dokładne badania i zastanowić się nad kształtem oraz siłą. Na początku oszacuj, jaki kształt magnesu będzie potrzebny, np. czy chcesz użyć magnesu walcowego lub magnesu z otworem. Pamiętaj, że większy magnes jest silniejszy, ale może być również bardziej niebezpieczny w użyciu. Następnie zwróć uwagę na możliwość utrzymywania obciążeń, która jest kluczowa przy doborze magnesu do projektu. Więcej informacji na temat siły przyciągania znajdziesz w specyfikacjach produktów.
Magnesy są niezbędne w wielu projektach, zarówno do poprawy funkcji w domu, jak i jako część produktów sprzedawanych. W niektórych przypadkach konieczne jest ich sklejenie. Oto kilka wskazówek, które pomogą Ci osiągnąć sukces już za pierwszym razem.

Wskazówki aplikacyjne:
Zawsze przeczytaj instrukcje kleju, którego używasz.
Przed nałożeniem kleju, upewnij się, że powierzchnie są czyste. Resztki, tłuszcz czy brud mogą stworzyć barierę, która utrudni prawidłowe przyklejenie magnesu.
Zaleca się szlifowanie gładkiej powierzchni magnesu, co poprawia przyczepność kleju.
Klejenie magnesów do plastiku bywa trudniejsze z powodu problemów z uzyskaniem dobrej przyczepności kleju. Skonsultuj się z pomocą techniczną producenta kleju, aby uzyskać porady dotyczące plastiku.
Najlepszym wyborem kleju jest dwuskładnikowa żywica epoksydowa, która sprawdza się w większości przypadków. Polecane kleje to: Loctite Plastic Bonder Epoxy, E6000 Adhesive, Super Glue, Gorilla Glue, i wiele innych.
Unikaj używania pistoletów do kleju na gorąco, ponieważ wysoka temperatura może spowodować rozmagnesowanie magnesów.
Do montażu tablic rejestracyjnych zaleca się użycie dwóch magnesów MPL 40x18x10 / N38 - magnes neodymowy płytkowy pod zderzak oraz dwóch magnesów MPL 40x20x5 / N38 - magnes neodymowy płytkowy pod tablicę rejestracyjną. Ważne jest, aby pod tablicę przymocować cienką blachę, co pozwoli na przykrycie magnesów i zabezpieczenie ich przed odłączeniem się z powodu ciepła i wibracji. Ponieważ tablice rejestracyjne są wykonane z aluminium i nie są magnetyczne, blacha pomoże w utrzymaniu magnesów w pożądanej pozycji. Dodatkowo, nity na tablicy mogą tworzyć złudzenie, że tablica jest trwale przymocowana, co zwiększa ochronę przed kradzieżą.
Magnes przyciąga żelazo, ponieważ żelazo jest materiałem ferromagnetycznym. Jego struktura atomowa pozwala na silne przyciąganie z biegunami magnesu.
Magnes zazwyczaj nie przyciąga aluminium, ponieważ aluminium nie jest metali ferromagnetycznych. Jednakże, w określonych warunkach, jak w obecności ekstremalnych magnesów, aluminium może wykazywać słabe reakcje magnetyczne.
Magnes przyciąga metal, ponieważ niektóre metale, takie jak żelazo, mają charakterystyki przyciągające magnesy. Gdy magnes zbliża się do żelaznej powierzchni, powstają polaryzacje magnetyczne, które spajają magnes z metalem.
Użyj kompasu: Prosty sposób to użycie kompasu. Pamiętaj, by nie zbliżać igły kompasu za bardzo do magnesu, aby nie uszkodzić kompasu. Strzałka kompasu wskazuje fizyczny biegun magnesu 'S'.
Skorzystaj z aplikacji na smartfonie: Istnieją aplikacje, które pomagają zidentyfikować bieguny magnesu.
Użyj teslametru: Teslametr pomiar indukcji magnetycznej i wskaże, który biegun jest który.
Wykrywacz biegunów magnetycznych: Możesz także zakupić przyrząd do wykrywania biegunów, który pomoże Ci wygodnie zidentyfikować bieguny. Więcej informacji o kierunkach magnetycznych znajdziesz na stronie NS magnesy.
Aby namagnesować magnes neodymowy, należy przeprowadzić proces zwany "indukcją magnetyczną". Istnieje kilka sposobów na namagnesowanie magnesu:
Używając silnego magnesu neodymowego: Umieść magnes obok silnego magnesu neodymowego, tak aby bieguny magnesów się stykały.
Za pomocą przepływu prądu: Przełącz magnes na przewody elektryczne, co powoduje, że prąd generuje magnetyzm w magnesie.
Za pomocą urządzenia do indukcji magnetycznej: Urządzenia do indukcji magnetycznej dostępne w sklepach z elektroniką umożliwiają namagnesowanie magnesu przy użyciu silnego pola magnetycznego.

Ważne: Proces namagnesowania magnesu neodymowego może być trudny, jeśli magnes jest uszkodzony lub zniekształcony. Więcej o metodach namagnesowania i kierunkach biegunów można znaleźć w naszym poradniku technologicznym.
Magnes i uchwyt magnetyczny różnią się konstrukcją i przeznaczeniem. Magnes to element wykonany z materiału magnetycznego, który przyciąga metale ferromagnetyczne, takie jak metale ferromagnetyczne. Stosowany jest w różnych dziedzinach, takich jak branża przemysłowa.

Uchwyt magnetyczny to magnes z zamontowaną obudową, która chroni go przed uszkodzeniami, takimi jak uszkodzenia mechaniczne. Dzięki specjalnej konstrukcji, uchwyt magnetyczny może mieć dodatkowe elementy, jak gwinty czy uchwyty, ułatwiające montaż i użytkowanie. Zaletą uchwytów magnetycznych jest ich większy udźwig, ale mają mniejszy zasięg działania. Więcej informacji o magnesach i uchwytach magnetycznych znajdziesz na stronie technologia.
Aby wyciągnąć wgniecenia z blachy samochodowej, istnieje kilka metod. Jedną z nich jest użycie magnesu w połączeniu z dużą kulą ferromagnetyczną na drugiej stronie blachy. Dzięki temu możliwe jest wyrównanie blachy, jednak metoda ta jest skuteczna tylko, gdy blacha ma grubość powyżej 0,6 mm.

Inną metodą jest PDR (Paintless Dent Repair), polegająca na odginaniu blachy za pomocą specjalnego zestawu (koszt ok. 500 PLN). Ta czasochłonna metoda pozwala na usunięcie wgnieceń bez konieczności lakierowania.

Alternatywnie, można użyć specjalistycznego urządzenia PDR 1000, które generuje pole magnetyczne i jest dedykowane do usuwania wgnieceń na karoseriach stalowych. To rozwiązanie jest szybkie i efektywne, a także znakomite dla warsztatów samochodowych. Więcej informacji o magnesach znajdziesz w naszym przewodniku technologicznym.
Magnes RM R6 GOLF - 13000 Gs / N52 - rozdzielacz magnetyczny marki DHIT to jeden z najlepszych magnesów do klipsów antykradzieżowych, o mocy 12000 - 13000 GS. Dzięki swojej unikalnej konstrukcji w kształcie "walca" z wgłębieniem w centrum, magnes skutecznie działa na klipsy o różnych kształtach, umożliwiając ich szybkie i łatwe usunięcie. Magnes jest prosty w użyciu i intuicyjny, a jego montaż na blacie kasy jest bardzo prosty. Jest to nowoczesne i efektywne narzędzie polecane do handlu detalicznego, takich jak outlety. Idealne dla sprzedawców, którzy cenią sprawność i efektywność. Więcej informacji o magnesach do zdejmowania klipsów antykradzieżowych znajdziesz na stronie klipsy antykradzieżowe.
Nie, nie powinno się lutować ani spawać magnesów neodymowych. Wysoka temperatura generowane podczas lutowania lub spawania może rozmagnesować magnesy, co prowadzi do usunięcia właściwości magnetycznych. Dodatkowo, istnieje ryzyko wybuchu pożaru podczas procesu. Spalanie magnesów prowadzi do emisji toksycznych gazów, co stanowi zagrożenie dla zdrowia i może prowadzić do zatrucia oparami. Zamiast tego, należy stosować techniki obróbki magnesów, które nie wpływają na ich magnetyczność.
Oddzielanie neodymowych magnesów wymaga delikatności i wprawy. Najlepszym sposobem jest użycie narzędzi takich jak płytki lub specjalne narzędzia do magnesów.
Zacznij od przesunięcia jeden magnes w bok, zamiast odciągać wprost. Przytrzymuj magnesy, aby zapobiec ich nagłemu połączeniu. Więcej informacji znajdziesz na stronie narzędzia separacyjne.
Do cięcia i szlifowania magnesów neodymowych stosuje się specjalistyczne tarcze diamentowe z chłodzeniem wodnym. Proces ten wymaga precyzji i doświadczenia. Więcej informacji znajdziesz na stronie narzędzia diamentowe.
Połączenie kilku magnesów może wzmocnić ich działanie, ale tylko w określonych warunkach. Zwiększenie mocy ma swoje ograniczenia.

Zastosowania magnesów

Poznaj inspiracje i przykłady wykorzystania magnesów neodymowych w domu, przemyśle oraz w kreatywnych projektach.

Nasza oferta obejmuje szeroki wybór magnesów, które zaspokoją potrzeby zarówno klientów indywidualnych, jak i firm:

Rodzaje magnesów:
Magnesy neodymowe: najsilniejsze na rynku, idealne do zaawansowanych zastosowań.
Magnesy ferrytowe: ekonomiczne rozwiązanie do mniej wymagających projektów.
Magnesy gumowane: odporne na uszkodzenia i nadające się do delikatnych powierzchni.
Magnesy specjalistyczne: np. do czujników, separatorów magnetycznych czy uchwytów.
Magnesy o różnych kształtach: walce, kostki, pierścienie, a także niestandardowe formy na zamówienie.
Nie, pojedynczy magnes nie jest w stanie skutecznie zamienić zaawansowanego separatora magnetycznego. Chociaż teoretycznie jest to możliwe, w praktyce użycie pojedynczego magnesu zamiast specjalistycznego separatora magnetycznego okaże się nieskuteczne. Separatory magnetyczne to skomplikowane urządzenia, które są przystosowywane do konkretnych wymagań i warunków pracy, a także często wyposażone w mechanizmy czyszczące i elementy mocujące. W branżach takich jak przemysł spożywczy, gdzie istnieją specyficzne wymogi dotyczące oczyszczania produktów za pomocą pola magnetycznego, użycie zwykłego magnesu zamiast separatora nie będzie wystarczające, ale także spowodować problemy przy audycie przez audytorów.
Magnesy to niezwykle wszechstronne narzędzia, które znajdują zastosowanie w wielu dziedzinach życia i przemysłu:

Przykładowe zastosowania:
Dom: Organizacja narzędzi, mocowanie zdjęć, czy tworzenie zamknięć magnetycznych.
Biuro: Tablice magnetyczne, uchwyty do dokumentów, organizery.
Przemysł: Separacja metali, mocowanie elementów, silniki elektryczne.
Edukacja: Eksperymenty fizyczne, nauczanie zasad magnetyzmu.
Hobby i sztuka: Tworzenie magnesów dekoracyjnych, modelarstwo, projekty DIY.
Magnesy na lodówkę wykonane są głównie z arkuszy magnetycznych, które prosto można przyciąć i udekorować. Popularnym materiałem jest także żywica, stosowana do uzyskania trwałych wykończeń. Modelina pozwala tworzyć ręcznie robione magnesy, a papier sprawdza się przy tworzeniu magnesów z zdjęciami. Dodatkowo, w produkcji magnesów często wykorzystuje się kleje przemysłowe do mocowania elementów dekoracyjnych.
Magnesy neodymowe są szeroko stosowane w różnych dziedzinach, takich jak elektronika, przemysł motoryzacyjny, medycyna, rolnictwo i inne. Można je znaleźć m.in. w głośnikach, silnikach elektrycznych, magnesach stosowanych w leczeniu chorób, a nawet w magnesach stosowanych w rolnictwie do wyznaczania poleceń dla maszyn rolniczych.
Magnesy neodymowe są wykorzystywane w wielu dziedzinach, takich jak głośniki, motory napędowe, a także magnetoterapia.
Magnesy neodymowe są szeroko wykorzystywane w elektronice, medycynie oraz branży motoryzacyjnej. Używane są w przetwornicach, turbinach wiatrowych i narzędziach chirurgicznych. Więcej przykładów znajdziesz na stronie zastosowania magnesów.
Magnesy przyczepiają się do lodówek ponieważ większość lodówek ma żelazne powierzchnie. Żelazne elementy lodówki są jako przewodniki magnetyczne, co pozwala magnesom trzymać się.
Jeśli szukasz silnego magnesu do pracy, zwróć uwagę na modele z serii UMP, takie jak:
Magnes UMP 67x28 [M8+M10] F120 GOLD, idealny do lekkich zadań,
Magnes UMP 75x25 [M10x3] F200 GOLD, uniwersalny wybór z udźwigiem 290 kg,
Magnes UMP 94x28 [M10] F300 GOLD, przeznaczony dla profesjonalistów.
Więcej informacji znajdziesz na stronie jaki magnes do poszukiwań.
Przede wszystkim głównymi odbiorcami na magnesy są przedsiębiorstwa oferujące urządzenia elektryczne, elektroniczne, pomiarowe, podmioty zajmujące się motoryzacją oraz wytwarzające najróżniejsze maszyny przemysłowe. Zalety magnesów dużej mocy bardzo również ceni branża meblarska, odzieżowa, szczególnie związana z odzieżą medyczną, firmy produkujące zapięcia do portfeli i torebek oraz marketing i reklama.
Tworzenie własnych magnesów na lodówkę jest proste. Potrzebujesz dowolnego magnesu, kleju i ozdobnej powierzchni (np. drewnianej figurki). Klej nakładamy na magnes i gotowe!

Informacje techniczne o magnesach

Szczegółowe dane techniczne na temat magnesów neodymowych – od klas i powłok ochronnych po ich właściwości i zastosowania.

Magnesy neodymowe pracują w zakresie temperatur od -130°C do nawet 230°C, w zależności od ich typu.
Siła oddziaływania dwóch biegunów magnetycznych to kluczowy aspekt działania magnesów, który można łatwo zaobserwować w praktyce:

Podstawowe zasady:
Bieguny przeciwne (N i S) przyciągają się, tworząc stabilne połączenie.
Bieguny te same (N i N lub S i S) odpychają się, powodując trudność w ich zbliżeniu.
Siła oddziaływania zależy od odległości między biegunami i mocy magnesów.
Pola magnetyczne mogą wpływać na przewodniki, a także na niektóre urządzenia elektroniczne, dlatego należy zachować ostrożność.
Ukierunkowane wykorzystanie biegunów magnetycznych pozwala na efektywne zastosowanie w technologiach, jak np. w silnikach elektrycznych czy separatorach.
Pierwsze znane badania i testy nad stopami metali nadającymi się do wytwarzania mocnych magnetyków miały swój początek w 1966 roku. W tym czasie G. Hoffer i K. Strnat z Air Force Materials Laboratory w Dayton, postanowili rozpocząć szeroki zakres badań nad magnetykami, składającymi się z metali zaliczanych do tak zwanej grupy metali ziem rzadkich. Początkowo pierwsze stopy metali, jakie chciano użyć do stworzenia elementów magnetycznych o dużej mocy, opierały się o kobalt, żelazo oraz kilka lantanowców, do jakich można zaliczyć: neodym Nd, cer Ce, prazeodym Pr, lantan La, itr Y oraz samar Sm. Te mało znane metale mają szczególne zdolności, takie jak magnesowanie do dużych wartości, jednak problemem była niska temperatura Curie. Dzisiaj produkowane elementy magnetyczne o dużej sile mają w składzie obok żelaza również lekkie lantanowce, co im zapewnia dużą anizotropię magneto-krystaliczną, a oprócz tego uzupełnia się ten skład o niewielką ilość kobaltu żeby podnieść poziom temperatury Curie. Debiutanckie magnesy o dużej sile zostały opracowane około 50 lat temu ze sproszkowanych ziaren samaru wraz z kilkoma dodatkowymi pierwiastkami z rodziny lantanowców. Został stworzony pierwszy, magnes o dużej mocy SmCo5. Produkcja opierała się na ukierunkowaniu drobinek stopu w formie proszku przy udziale pola magnetycznego podczas spiekania. Wypiekanie gotowych magnesów wykonywano w temperaturze powyżej 1100°C wraz z ostatecznym wyżarzaniem w temperaturze 850°C. Finalnym z etapów tworzenia magnesu o dużej mocy było namagnesowanie materiału przy użyciu pola magnetycznego 2T. Przez taką technologię temperatura Curie magnesów SmCo5 podwyższyła się do 745°C.
W okresie kiedy naukowcy projektowali następne magnesy o dużej mocy na bazie samaru, na początku lat osiemdziesiątych zostały odkryte interesujące magnetyczne cechy neodymu w połączeniu z żelazem i stalą. Amerykańska firma GM stworzyła w 1984 roku nowy związek o wzorze Nd2Fe14B, w proporcji ponad 70% żelaza, 15% neodymu, 6% boru. Technologia produkowania silnych magnesów neodymowych wykorzystuje dwie metody. Japoński zakład Sumitomo, wchodzący w skład firmy Hitachi, podobnie jak w przypadku silnych magnesów produkowanych z samaru, używał metody spiekania materiałów w formie proszku, co pozwalało uzyskać gęste magnesy.

W USA neodymowe magnesy produkowano w zakładach firmy GM techniką szybkiego ochładzania upłynnionej mieszaniny proszków. Czemu użycie boru, neodymu i żelaza dało znacznie lepsze rezultaty? Wykorzystanie neodymu znacznie mniej kosztowało, niż w przypadku samaru, a dodatkowo neodym posiada lepsze właściwości magnetyczne. Jednak jego temperatura Curie była znacznie niższa, z tego też powodu podjęto decyzję o podniesieniu tej temperatury do 530°C. Tak wysoki poziom uzyskano dzięki dodaniu do puli składników niewielkiej ilości boru. Dodatkowo da się też w szerokim zakresie regulować charakterystykę magnetyczną, przez wprasowanie do magnesu dodatkowych związków, takich jak gal Ga, miedź Cu, niob Nb i glin Al.

Magnesy neodymowe mogą zostać również wyposażone w powłoki chroniące przed korozją i mające zabezpieczające działanie przed działaniem szkodliwych warunków pogodowych. Jest to realizowane poprzez dołożenie warstwy miedzianej lub niklowej np. w w wykorzystywanych do poszukiwań uchwytach, czyli magnesach stosowanych do przeszukiwania dna akwenów wodnych. Inżynierowie cały czas opracowują nowe magnesy neodymowe, a dzięki postępowi w technologii metalurgicznej proszków, wymyślane są coraz to nowe stopy metali o podwyższonej koercji, jak również magnesy posiadające znacznie wyższą temperaturę Curie oraz możliwości namagnesowania stopów, przekraczające 1,6T.
Neodymowe magnesy to dzisiaj najmocniejsze rodzaje magnesów, jakie udało się do tej pory stworzyć. Blisko 30 lat temu w Trinity College w Dublinie naukowiec Michael Coey wymyślił zupełnie nowy magnetyczny materiał wzorze chemicznym Sm2Fe17N2. Proces jego produkcji był realizowany w syntezie drobnego proszku samaru i żelaza, które sprasowane w polu magnetycznym o dużej mocy wraz z dodatkiem azotu, osiągnęły temperaturę Curie w wysokości 470°C i poziom namagnesowania 0,9T. Nie osiągnięto tu wprawdzie parametrów magnesu neodymowego, jednak wymyślony materiał faktycznie sporo przewyższał pierwsze z produkowanych magnesów. Koniec XX wieku przyniósł coraz to nowe odkrycia w zakresie mocnych magnesów oraz metod ich tworzenia.
Opracowano nano-krystaliczny materiał magnetyczny, zbudowany z malutkich ziaren o wielkości mniejszej niż 100 nm. Nowo odkryte ziarna nano-kryształów, w przeciwieństwie do monokryształów oddzielone są od siebie przestrzenią o wyższym napięciu powierzchniowym oraz nieuporządkowanej strukturze wewnętrznej. Poprzez użycie, na etapie spiekania stopów pierwiastków z rodziny ziem rzadkich w połączeniu z domieszką żelaza, charakteryzują się dużą wartością remanencji magnetycznej. Świetne parametry magnetyczne wynikają również z jednej istotnej rzeczy, czyli połączenia magnetycznych momentów neodymu z żelazem. Daje to doskonałe magnesowanie przedstawianych magnesów.
Aktualnie produkuje się magnesy neodymowe przede wszystkim w Azji. Podstawowym producentem i eksporterem takich wyrobów są Chiny, z uwagi na posiadanie większości globalnych zasobów pierwiastków ziem rzadkich. W przemysłowej produkcji silnych magnesów wykorzystuje się przede wszystkim dwie grupy związków: Nd2Fe14B i Sm2Fe17N2. Są to magnesy neodymowe i magnesy posiadające strukturę nano krystaliczną, charakteryzujące się nie tylko najwyższym stopniem namagnesowania, lecz także wysokim poziomem remanencji magnetycznej. Wykorzystanie mocnych neodymowych magnesów jest naprawdę wszechstronne. Podstawowymi rodzajami odbiorców są podmioty zajmujące się produkcją, tworzące urządzenia elektroniczne i elektryczne, zwłaszcza firmy zajmujące się motoryzacją, stosujące wysoko wydajne elektryczne i hybrydowe silniki. Przy wytwarzaniu takich wykorzystywane są neodymowe magnesy z mieszaniny ze związkami zmniejszającymi spadki wydajności magnesów w wysokich temperaturach na przykład takimi jak Terb (Tb) oraz dysproz (Dy). Dzięki użyciu tych związków, znacznie powiększono magnetyczną koercję i wydajność całkowitą silnych magnesów wykorzystywanych w aparaturze elektrycznej o większej mocy. W Stanach Zjednoczonych już od kilkudziesięciu lat prowadzi się badania przez powołany do tego celu Instytut Rare Earth Alternatives in Critical Technologies (REACT), który ma zadanie opracowywać alternatywnych stopów i materiałów. W 2011 roku zostało przyznane prawie 32 miliony dolarów na rozwijanie zaawansowanych projektów w ramach programu Rare-Earth Substitute, to znaczy możliwości stworzenia związków zastępujących metale ziem rzadkich jako alternatywę dla naturalnych złóż pierwiastków, znajdujących się na terenie Azji.

Produkowanie magnesów na bazie neodymu oparte zostało na dwóch technologiach. Japońskie firmy stosowana jest metoda spiekania komponentów proszków, a w samych w USA popularność zyskała metoda oparta na szybkim chłodzeniu. Zależnie od wymagań, magnesy z neodymu wytwarza się przy użyciu innych pierwiastków, np. aluminium, galu lub miedzi. Przez takie domieszki można w szerokim zakresie korygować parametry magnetyczne magnesu, jego wytrzymałość, a także odporność na wysokie temperatury. Można nawet sprawić, że magnes będzie odporny na niekorzystne atmosferyczne warunki, na przykład wodę, powodującą korozję. Natomiast systematyczne poprawianie procesów metalurgicznych doprowadziło do otrzymania różnego rodzaju stopów, które w znaczący sposób wpłynęły na zwiększenie tak zwanej temperatury Curie. Stworzony w nowoczesny sposób magnes neodymowy, uzyskuje poziom namagnesowania przekraczający 1,6Tesli, czyli dużo wyższe na przykład od pola magnetycznego Ziemi.
Magnes neodymowy to najsilniejszy magnes stały dostępny na rynku. Jego niesamowicie silny magnes wynika z zastosowania stopu żelaza, neodymu i boru w celu uzyskania tetragonalnej struktury krystalicznej związku Nd2Fe14B. Takie połączenie składników daje niespotykane wcześniej własności magnetyczne, w tym wyjątkowo wysoką anizotropię magnetokrystaliczną.
Magnesy neodymowe często produkowane są w formie spieków, ale można również wytwarzać je jako tzw. magnesy wiązane, używając jako spoiwa żywic bądź tworzyw sztucznych.
Magnesy neodymowe to stop żelaza, B, neodymu oraz innych dodatków. Proces produkcji zaczyna się od wyboru odpowiednich ilości każdego z komponentów, które są stopione, a następnie odlane. Powstałe arkusze są kruszone metodą wodorową, a następnie mielone na proszek. Otrzymany w ten sposób proszek jest poddawany procesowi zagęszczania. Materiał zostaje uformowany metodą pirometalurgiczną pod dużym ciśnieniem, co pozwala na uzyskanie dużego stopnia gęstości i jednorodności. W czasie procesu formowania, materiał jest magnetyzowany przy użyciu pola magnetycznego, które określa kierunek magnesowania, jeśli produkowane są magnesy anizotropowe, lub bez użycia pola magnetycznego, jeśli potrzebne są magnesy izotropowe. Następnie, kształtki zostają spiekane, a po tym zabiegu poddawane są obróbce mechanicznej i powierzchniowej (w tym chronione są warstwami ochronnymi). Na koniec, wynikający produkt jest zmagnesowany w magneśnicy, a finalnie staje się magnesem.
Magnesy z pierwiastkami ziem rzadkich to magnesy, które zawierają przynajmniej w jakiejś części metale nazywane pierwiastkami ziem rzadkich. Do tej grupy pierwiastków zaliczamy: skand, itr, lantan, cer, prazeodym, neodym, promet, samar, europ, gadolin, terb, dysproz, holm, erb, tul, iterb i lutet. Najbardziej znane z tych pierwiastków dla każdego użytkownika magnesów to oczywiście neodym, który jest wykorzystywany do produkcji magnesów NdFeB, oraz samar, który jest wykorzystywany do produkcji magnesów SmCo. Pierwiastki ziem rzadkich wcale nie występują w małych ilościach w skorupie ziemskiej. Tak naprawdę występują dosyć obficie, ale zazwyczaj ich złoża są rozproszone i skąpe, co uniemożliwia opłacalne ich wydobycie. W związku z tym, zostały nazwane „pierwiastkami ziem rzadkich”.
Oczywiście najsilniejszy będzie N52 magnes). Jednocześnie jednak, takie materiały są dużo droższe od standardowych. Wyższy magnes będzie działał na większą odległość, linie sił pola magnetycznego będą wychodzić z płaszczyzny bieguna strzeliście do góry i istnieje szansa na przyciągnięcie elementu z żelaza lub innego magnesu z dalszej odległości. Natomiast magnes o płaskiej konstrukcji magnes w praktyce będzie miał większy udźwig, będzie w stanie przytrzymać i podnieść elementy o większej powierzchni i gabarytach.
Symbole stosowane dla neodymów zawierają cyfry i litery, gdzie symbole literowe jak M ("medium"), H ("high"), SH ("super high"), UH ("ultra high"), EH ("extra high") wskazują na moc odporności magnesu na rozmagnesowanie w wyniku wysokiej temperatury lub działania odwrotnego pola magnesowego, a numery jak 35, 38, 42, 45, 48, 50, 52 określają gęstość energii magnetycznej magnesu wyrażoną w MGsOe. Na przykład, symbol N52SH oznacza, że jest to magnes neodymowy z energią magnetyczną wynoszącą 52 Mega Gauss Oerstedach - (MGsOe) i ma bardzo wysoką wartość koercji (SH symbolizuje "super high").
Magnesy neodymowe zazwyczaj są dostępne w bardzo nieskomplikowanych kształtach takich jak: walec, a także pierścień czyli walce neodymowe z otworem. Potocznie mówimy wtedy o magnesach pierścieniowych ale trzeba też dodać, że magnesy zarówno płytkowe jak i pierścieniowe mogą być wykonywane ze specjalnie fazowanymi otworami ułatwiającymi schowanie, zlicowanie z powierzchnią magnesu łba śruby lub wkrętu. Istnieje także możliwość wykonania magnesów neodymowych w kształcie kuli oraz tzw. magnesów segmentowych (łukowych) będących wycinkami pierścienia. Można również zamówić magnesy w kształcie np. trapezu lub innych figur geometrycznych, pod warunkiem, że da się taki kształt wyciąć za pomocą elektrodrążarki i nie pokruszyć przy tej operacji kształtki magnesu. Kruchość magnesów neodymowych jest cechą ograniczającą wykonywanie skomplikowanych kształtów, przykładowo, nie da się wykonać gwintu bezpośrednio w samym magnesie
Magnesy neodymowe wytwarzane ze związku Nd2Fe14B to spiek żelaza, boru i neodymu. W rzeczywistości w skład magnesu neodymowego wchodzi tylko około trzydziestu procent związku Nd2Fe14B, dzięki swojej budowie atomowej magnesy te są tak potężne.
Do namagnesowania magnesu stosuje się urządzenia magnetyczne, czyli urządzenia, w których możliwe jest wytworzenie odpowiednio dużego stałego pola elektromagnetycznego. Po zwiększeniu pola (natężenie prądu) do punktu zwanego punktem nasycenia, dalsze jego zwiększanie nie ma sensu, gdyż nie zwiększa to indukcji magnetycznej magnesu. Następnie wartość zewnętrznego pola jest zmniejszana do zera. Właściwości magnesów neodymowych, wykonanych z materiałów magnetycznie twardych sprawiają, że po wyłączeniu pola wartość namagnesowania nie spada do zera tylko ustala się w punkcie Br, czyli indukcji remanencji, zwanej także punktem pozostałości magnetycznej (namagnesowaniem resztkowym). Proces magnesowania najlepiej opisuje pierwsza ćwiartka pętli histerezy magnetycznej.
Tak, istnieje kilka sposobów na przemagnesować magnesów neodymowych. Najprostszym z nich jest ogrzanie magnesu najpierw powyżej zdefiniowanej dla materiału magnetycznego maksymalnej temperatury pracy, zazwyczaj jest to 80 stopni C - co spowoduje częściowe odmagnesowanie, a później rozgrzanie powyżej temperatury Curie, czyli takiej powyżej której ferromagnetyk staje się paramagnetykiem, będzie to skutkowało całkowitym zdemagnesowaniem. Innymi sposobami na rozmagnesowanie magnesów neodymowych są: działanie odpowiednio dużym stałym i przeciwnym polem magnetycznym lub poddanie magnesu zanikającym i przemiennym polem magnetycznym.
Magnes neodymowy jest powszechnie wykorzystywany w wielu urządzeniach elektrycznych: i miernikach, instalacjach alarmowych, monitorach, dronach. Do głównych gałęzi w których wykorzystuje się magnesy neodymowe zaliczamy: przemysł samochodowy.
Najważniejszym kryterium w doborze neodymowych magnesów będzie jego przeznaczenie. Należy wziąć pod uwagę warunki temperaturowe, pogodę i wreszcie siłę z jaką ma działać magnes. Siła działania magnesów neodymowych często podawana jest jako udźwig w kilogramach. Należy wziąć pod uwagę, iż jest to wartość mierzona w laboratoriach, w idealnych warunkach, przy idealnym kontakcie magnesu z podłożem ferromagnetycznym i co istotne kierunek działania tej siły jest prostopadły do powierzchni kontaktu magnesu z podłożem. W razie wątpliwości proszę kontaktować się z doradcami firmy Dhit sp. z o.o. telefon w zakładce kontakt.
Magnes neodymowy przyciąga silnie przede wszystkim żelazo i wszelkie stopy z jego domieszką oraz metale: gadolin, nikiel, erb, kobalt i dysproz. To, czy dany element zostanie łatwiej czy też trudniej przyciągnięty przez magnes, zależy też od kształtu tego elementu. W długim elemencie, np. w żelaznym gwoździu, kiedy zostanie on nasycony polem magnetycznym z magnesu stałego, szybko ustalą się miejsca biegunów magnetycznych, t.j. na jednym końcu gwoździa będzie „N”, a na drugim „S”. Jeżeli ten sam gwóźdź przetopimy i uformujemy z niego kulę, to okaże się, szczególnie jeżeli kula będzie w ruchu, że będzie ją trudniej wychwycić za pomocą pola magnetycznego.
Nie, nie podwoi się.
Gęstość strumienia magnetycznego jest ilością strumienia magnetycznego w jednostce powierzchni. Chociaż gęstość strumienia stanie się nieco silniejsza, gdy dwa magnesy zostaną umieszczone pionowo jeden na drugim, ponieważ powierzchnia pozostanie taka sama, nie będzie znaczącej różnicy. Na przykład, jeśli dwa magnesy o rozmiarze MW 10mm x 10mm zostaną umieszczone jeden na drugim, gęstość strumienia magnetycznego będzie prawie taka sama jak dla magnesu o rozmiarze MW 10x10 mm.
Magnetyzm jest trwały. Ścisłe mówiąc, magnetyzm osłabia się przez lata, jednak demagnetyzacja jest tak niewielka, że nawet po kilkudziesięciu latach nie odczuwa się znacznego osłabienia. Dlatego magnesy neodymowe są powszechnie uważane za niewrażliwe na demagnetyzację i nazywane magnesami trwałymi. Demagnetyzacja częściej występuje z powodu zmian temperatury i obciążenia odpychającego, a nie ze względu na upływ czasu. Magnesy z materiału Alnico mogą wymagać ponownego namagnesowania, ponieważ łatwo ulegają demagnetyzacji z powodu obciążenia odpychającego.
Magnez to pierwiastek chemiczny o symbolu Mg, znany ze swoich wyjątkowych właściwości, takich jak lekkość i odporność na korozję. W kontekście oddziaływania z magnesami, sytuacja jest bardziej złożona niż w przypadku materiałów ferromagnetycznych, takich jak żelazo czy nikiel.

Kluczowe informacje:
Magnez jest paramagnetyczny, co oznacza, że reaguje na pole magnetyczne, ale siła przyciągania jest bardzo słaba.
W warunkach normalnych magnesy nie przyciągają magnezu w zauważalny sposób, ponieważ jego właściwości paramagnetyczne są niewystarczające do wytworzenia znaczącej siły.
Aby zaobserwować efekt paramagnetyzmu magnezu, potrzebne jest bardzo silne pole magnetyczne i specjalistyczny sprzęt.
Magnez różni się od materiałów takich jak żelazo, kobalt czy nikiel, które są ferromagnetyczne i silnie reagują na magnesy.
Ze względu na swoje właściwości, magnez znajduje zastosowanie w wielu gałęziach przemysłu, jednak nie jest używany jako materiał magnetyczny.
Magnesy są nieodzownym elementem wielu urządzeń i technologii, ale jak właściwie powstają? Proces ich tworzenia zależy od rodzaju magnesu, który chcemy uzyskać – magnesów trwałych, elektromagnesów czy magnesów tymczasowych. Oto przegląd kluczowych etapów produkcji.

Proces tworzenia magnesu:
Wybór materiału: Magnesy trwałe powstają z materiałów ferromagnetycznych, takich jak żelazo, nikiel, kobalt czy stopy neodymu, żelaza i boru (NdFeB).
Kształtowanie: Materiał jest formowany w pożądany kształt poprzez odlewanie, spiekanie lub prasowanie proszków magnetycznych.
Magnetyzacja: Gotowy element jest poddawany działaniu silnego pola magnetycznego, co powoduje uporządkowanie domen magnetycznych w materiale i nadaje mu właściwości magnetyczne.
Obróbka końcowa: W zależności od przeznaczenia, magnesy mogą być dodatkowo szlifowane, pokrywane ochronną powłoką lub wykańczane w inny sposób.
Kontrola jakości: Każdy magnes jest testowany pod kątem jego właściwości magnetycznych i wytrzymałości, aby spełniał wymagania użytkowe.
Elektromagnesy: W przypadku elektromagnesów proces polega na nawinięciu przewodnika wokół rdzenia z materiału ferromagnetycznego i podłączeniu do źródła prądu elektrycznego.
Terapia polem magnetycznym jest alternatywną metodą leczenia, która zyskuje popularność, choć wciąż budzi kontrowersje. Polega na stosowaniu magnesów lub urządzeń generujących pole magnetyczne w celu poprawy zdrowia.

Kluczowe fakty:
Terapia magnetyczna jest stosowana przede wszystkim w leczeniu bólu, regeneracji tkanek i poprawie krążenia krwi.
Istnieją badania wskazujące, że pole magnetyczne o niskiej częstotliwości może wspierać leczenie stanów zapalnych, złamań kości czy zespołu cieśni nadgarstka.
Skuteczność terapii magnetycznej nie została jednoznacznie potwierdzona naukowo, a opinie ekspertów są podzielone.
Terapia ta jest zazwyczaj bezpieczna, ale może nie być odpowiednia dla osób z rozrusznikiem serca, metalowymi implantami lub w ciąży.
Zawsze konsultuj się z lekarzem przed rozpoczęciem terapii polem magnetycznym, szczególnie w przypadku poważnych schorzeń.
Magnesy neodymowe to najnowocześniejsze i najpotężniejsze magnesy trwałe, które różnią się od tradycyjnych magnesów pod wieloma względami.

Różnice między magnesami:
Siła magnetyczna: Magnesy neodymowe (NdFeB) są kilkukrotnie silniejsze niż tradycyjne magnesy ceramiczne lub ferrytowe.
Skład: Wykonane z neodymu, żelaza i boru, podczas gdy magnesy tradycyjne są najczęściej ferrytowe.
Rozmiar: Magnesy neodymowe mogą być bardzo małe, a jednocześnie niezwykle silne.
Zastosowanie: Neodymowe magnesy są stosowane w nowoczesnych technologiach, takich jak silniki elektryczne, dyski twarde czy urządzenia medyczne.
Odporność: Magnesy neodymowe są bardziej kruche i mniej odporne na wysoką temperaturę niż ferrytowe, co wymaga stosowania powłok ochronnych.
Najmocniejsze magnesy dostępne na rynku to magnesy neodymowe (NdFeB). Są one szeroko stosowane w technologiach wymagających dużej siły magnetycznej.

Dlaczego magnesy neodymowe są najmocniejsze?
Wysoka siła magnetyczna: Są zdolne do generowania bardzo silnego pola magnetycznego, nawet w małych rozmiarach.
Nowoczesne technologie: Stosowane w urządzeniach takich jak silniki elektryczne, generatory wiatrowe i głośniki.
Kompaktowość: Dzięki swojej sile mogą zastąpić większe i słabsze magnesy.
Alternatywa: Innym rodzajem silnych magnesów są magnesy samaro-kobaltowe (SmCo), które są bardziej odporne na wysokie temperatury, ale mniej powszechne i droższe.
Magnesy anizotropowe są formowane w obecności zewnętrznego pola magnetycznego, które kieruje tworzącym magnes wzdłuż linii sił pola. Magnesy te są namagnesowane w jednym kierunku, co sprawia, że są mocniejsze. Z kolei magnesy izotropowe są formowane bez zewnętrznego pola, a ich magnetyzacja ma miejsce tylko na końcu procesu. Są one słabsze, ale mogą być namagnesowane w dowolnym kierunku, co pozwala na tworzenie magnesów wielobiegunowych.
Więcej informacji o rodzajach materiałów magnetycznych znajdziesz na stronie technologia.
Magnesy neodymowe to jedne z najmocniejszych magnesów stałych. Magnesy neodymowe określają trzy kluczowe parametry, które wpływają na ich właściwości: remanencja, koercja (Hc), oraz maksymalna energia produkcyjna (BHmax).

Remanencja (Br) to maksymalna indukcja magnetyczna, którą magnes może utrzymać po usunięciu pola magnetycznego. Wartość Br dla magnesów neodymowych mieści się w zakresie od 1,1 do 1,4 T.

Koercja (Hc) to pole magnetyczne potrzebne do wymazania magnetyzacji remanentnej. Koercja magnesów neodymowych wynosi od 800 do 2000 kA/m.

Maksymalna energia produkcyjna (BHmax) to miara energii, jaką magnes może dostarczyć na jednostkę objętości. Maksymalna energia produkcyjna magnesów neodymowych to wartość między 200 a 400 kJ/m3.

Aby zmierzyć te parametry, wykorzystuje się specjalistyczne urządzenia jak gaussmetry, teslametry i magnetometry. Więcej informacji znajdziesz na stronie technologia.
Gęstość magnesu neodymowego to ważny parametr techniczny, który określa jego ciężar właściwy. Im większa gęstość, tym mocniejszy magnes neodymowy.

Poniżej przedstawiamy wartości gęstości dla różnych materiałów magnetycznych:
Woda: 1.0 (referencyjna wartość)
Magnes ferrytowy: około 4.8
Magnes neodymowy: około 7.5
Magnes Alnico: około 7.3
Żelazo: 7.9

Magnesy neodymowe są gęstsze niż inne materiały magnetyczne, co czyni je idealnymi do różnych zastosowań przemysłowych, takich jak silniki czy generatory.
Magnesy neodymowe, znane również jako magnesy neodymowo-żelazoborowe, zostały wynalezione przez zespół naukowców z Japonii w 1984 roku. W skład zespołu wchodzili Shunichi Miyazawa, Kiyoshi Watanabe oraz Jiro Fujita. Odkrycie miało miejsce w Instytucie Badań nad Ziemiami Rzadkimi w Japonii.

Magnesy neodymowe stały się przełomem technologicznym ze względu na swoją wysoką siłę magnetyczną oraz stosunkowo niewielką masę w porównaniu do tradycyjnych magnesów. Dzięki temu znalazły szerokie zastosowanie w wielu branżach, w tym elektronice, motoryzacji, medycynie.
Nie ma materiałów, które mogą całkowicie zablokować pole magnetyczne, ale są materiały, które mogą znacznie zmniejszyć jego wpływ. Takie materiały nazywają się ekranami magnetycznymi.

Najczęściej wykorzystywanym materiałem do ekranowania jest żelazo, które ma bardzo dobrą przewodność magnetyczną. Inne materiały, takie jak stal nierdzewna, kobalt, nikiel czy miedź, również mogą działać jako ekrany magnetyczne, ale ich skuteczność jest mniejsza.

Ekranowanie polega na umieszczeniu materiału o wysokiej przewodności magnetycznej pomiędzy źródłem pola a chronionym obszarem. Takie materiały tworzą tzw. klatkę Faradaya, która zmienia kierunek linii sił pola magnetycznego i zmniejsza ich wpływ na chronioną przestrzeń.
Tak, każdy magnes ma co najmniej dwa bieguny magnetyczne. Współczesne magnesy mogą być magnesowane wielobiegunowo, co oznacza, że mają więcej niż jedną parę biegunów. Techniczne oznaczenie takich magnesów to 4-pole, które oznaczają odpowiednio jedną, dwie lub trzy pary biegunów magnetycznych.

Magnesy izotropowe, formowane bez pola magnetycznego, mogą posiadać wielobiegunową strukturę. Magnesy anizotropowe, które są formowane w silnym polu magnetycznym, mogą być również magnesowane wielobiegunowo, ale tylko w określonym kierunku.

Każdy magnes ma zawsze parzystą liczbę biegunów, co jest kluczowe dla jego działania.
Magnesy różnią się odpornością na wysoką temperaturę. Oto zakresy temperatur dla różnych typów magnesów:
Magnesy ferrytowe i samarowo-kobaltowe - od -60°C do 250°C.
Magnesy neodymowe - w zależności od rodzaju, od -130°C do 230°C.
Magnesy alnico - wytrzymają temperatury do 550°C.

Wszystkie magnesy dobrze znoszą niskie temperatury, jednak wyższe temperatury mogą prowadzić do utraty magnetyzmu. Należy pamiętać, że przegrzanie może skutkować utratą siły przyciągania i rozmagnesowaniem.
Separator magnetyczny to skomplikowane urządzenie składające się z wielu magnesów, które działają w tzw. obwodach magnetycznych. Te obwody zwiększają natężenie pola magnetycznego w wybranych obszarach. Chociaż istnieje możliwość zastosowania magnesu zamiast separatora, będzie to niewydajne. Magnesy bez dodatkowych elementów są mniej efektywne. Separator magnetyczny jest dostosowany do warunków pracy i zapewnia wysoką skuteczność. Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Tak, możliwe jest wykonanie jednostronnego wałka magnetycznego, który działa jako filtr w pompie ciepła. Wałki magnetyczne są wykonane z magnesu neodymowego umieszczonego w stalowej rurze, co umożliwia przepływ płynu tylko w jednym kierunku. Tego typu wałki są szeroko stosowane w systemach grzewczych, pompach ciepła i innych urządzeniach przemysłowych do usuwania zanieczyszczeń magnetycznych.

Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Magnesy neodymowe przyciągają materiały ferromagnetyczne takie jak żelazo (Fe), nikiel (Ni), kobalt (Co). Te materiały są silnie przyciągane przez magnesy neodymowe. Metale stalowe również jest silnie przyciągana przez magnesy, ponieważ ma właściwości ferromagnetyczne. Materiały, które nie są przyciągane przez magnesy to stal nierdzewna 304 oraz stal kwasoodporna 316L, znana również jako stal dentystyczna.
Symbole magnesów neodymowych obejmują litery i cyfry, które określają jego siłę i właściwości. Litery, takie jak M - "medium", H - "high", SH - "super high", UH - "ultra high", EH - "extra high" wskazują na odporność magnesu na rozmagnesowanie. Natomiast cyfry, takie jak N35, N42, N52, określają gęstość energii magnetycznej, wyrażoną w MGsOe. Na przykład, symbol N42SH oznacza magnes o gęstości energii 42 MGsOe oraz wysokiej odporności na rozmagnesowanie. Więcej informacji o magnesach i ich oznaczeniach znajdziesz w naszym poradniku technologicznym.
Magnesy neodymowe nie przyciągają czyste złoto, aluminium czy miedź. Te metale odpychają się od magnesów w obecności zmiennego pola magnetycznego przez zjawisko prądów wirowych. Jednak magnesy neodymowe przyciągają metale ferromagnetyczne, takie jak żelazo (Fe), nikiel (Ni), kobalt (Co). Więcej informacji o magnesach i ich właściwościach znajdziesz na stronie technologia.
Magnes stały, znany również jako magnes trwały, to materiał o szerokiej pętli histerezy magnetycznej, który po namagnesowaniu utrzymuje swoje właściwości magnetyczne. Po zastosowaniu odpowiedniego pola magnetycznego, domeny magnetyczne w materiale ustawiają się w jednym kierunku i pozostają w tej pozycji, nawet po wyłączeniu pola. Magnesy stałe charakteryzują się koercją HcJ wynoszącą co najmniej 24 kA/m, a większa wartość koercji, tym większa odporność na zjawisko rozmagnesowania. Takie magnesy są stosowane m.in. w urządzeniach elektrycznych, gdzie odporność na rozmagnesowanie jest kluczowa. Więcej informacji o magnesach znajdziesz na stronie technologia.
Magnes przyciąga żelazo, ponieważ żelazo jest metalem ferromagnetycznym, który posiada wewnętrzną siłę magnetyczną. Ferromagnetyki takie jak żelazo, inne metale ferromagnetyczne, posiadają domeny magnetyczne, które kierują swoje pola w jednym kierunku. Kiedy magnes zbliża się do żelaza, pole magnetyczne magnesu kieruje się w stronę pól magnetycznych żelaza, co zwiększa siłę przyciągania.

Domeny magnetyczne w materiałach ferromagnetycznych to małe fragmenty, w których pole magnetyczne jest skierowane w jednym, stałym kierunku. Kiedy magnes jest zbliżany, wzmacnia pole magnetyczne w wybranych domenach, co powoduje, że pozostałe domeny zaczynają się orientować w jednym kierunku, w wyniku czego żelazo jest przyciągane przez magnes.
Nie, oba bieguny magnesu mają taką samą siłę.
Więcej o biegunach znajdziesz na stronie enes magnesu.
Magnesy są często stosowane w naprawach karoserii. Metoda ta polega na połączeniu dużego magnesu i kuli, co pozwala na odginanie blachy bez lakierowania. Więcej szczegółów na stronie technologia.
Magnesy neodymowe są trwałe, tracąc mniej niż 1% na dekadę, o ile nie są narażone na niekorzystne warunki. Przechowywanie w suchym środowisku zapewnia ich długowieczność.
Siła poślizgu magnesu to ilość energii potrzebna do poruszenia magnesu wzdłuż powierzchni. Zależy ona od materiału powierzchni oraz jego siły magnetycznej. Sprawdź kalkulator.
Magnesy przyciągają się, gdy ich bieguny północny i południowy są skierowane ku sobie. Jest to podstawowa zasada magnetyzmu, które powoduje działanie siły magnetycznej.
Magnesy neodymowe pracują w zakresie temperatur od -130°C do nawet 230°C, w zależności od ich typu.
Aby wzmocnić jego moc magnetyczną, należy utrzymywać magnes w odpowiednich warunkach, zastosować zewnętrzne pole magnetyczne oraz ułożyć magnesy w układach wielobiegunowych.
Magnesy neodymowe mogą utrzymać swoją siłę magnetyczną przez wiele lat, o ile są odpowiednio użytkowane.
Magnesy neodymowe charakteryzują się minimalnym spadkiem siły. Typowa utrata mocy wynosi około 1% na dekadę, o ile są chronione przed wysoką temperaturą i wilgocią. Więcej informacji znajdziesz w dziale trwałość magnesów.
Magnesy neodymowe są klasyfikowane w PKWiU w kategorii 26.80.99, który obejmuje wyroby magnetyczne. Szczegółowe informacje znajdziesz w sekcji PKWiU magnesów.
"Magnesowanie przez grubość" odnosi się do metody, w którym pole magnetyczne jest skoncentrowane przez najgrubszą warstwę magnesu, a nie przez długość czy szerokość. Ten typ magnesów są popularne w aplikacjach technologicznych, gdy konieczne jest specyficzna orientacja pola magnetycznego.
Blokowanie działania pola magnetycznego wymaga użycia materiałów takich jak mu-metal, które pochłaniają linie sił pola. Nie ma materiału, który całkowicie blokuje pole magnetyczne, ale pewne substancje mogą osłabić jego oddziaływanie. Więcej informacji znajdziesz na stronie materiały do blokowania pola.
Magnesy neodymowe często pokrywane są powłokami ochronnymi, aby zapobiec korozji, przy kontakcie z wilgocią. Najpopularniejsze powłoki to miedź-nikiel i złoto, które przedłużają żywotność magnesów. Dowiedz się więcej o powłokach na stronie powłoki magnesów.
Magnesy odpychają się, gdy ich jednakowe bieguny są ustawione do siebie. To zjawisko wynika z praw fizyki. Kiedy biegun północny jednego magnesu jest ustawiony w stronę bieguna północnego drugiego (lub biegun południowy w stronę południowego), magnesy te się nie przyciągają. To fundamentalne zasada elektromagnetyzmu.
Magnesy neodymowe to związki składające się z neodymu, boru oraz żelaza. Ich taryfa celna to 8505199089. Oznacza to, że są one klasyfikowane jako magnesy w międzynarodowym systemie kodowania celnego. Warto podkreślić, że produkcja tych magnesów jest globalnie rozpowszechniona, przy czym Chiny są głównym producentem. Magnesy neodymowe są także wytwarzane w krajach takich jak Stany Zjednoczone, Rosja i inne, aby sprostać rosnącemu popytowi na te wyjątkowo silne magnesy. Przed importem warto zweryfikować stawki celne w systemach ISZTAR lub TARIC oraz upewnić się, czy produkt spełnia wymogi certyfikacyjne (np. CE, RoHS), zwłaszcza jeśli ma kontakt z żywnością lub skórą.
Bieguny magnesu da się rozpoznać za pomocą kompasu lub magnetometru. W kompasie, igła wskazuje biegun N i S. Więcej informacji znajdziesz w dziale pole magnetyczne.

Bezpieczeństwo

Zasady bezpiecznego użytkowania magnesów, w tym informacje o potencjalnych zagrożeniach oraz odpowiedzialnym obchodzeniu się z magnesami.

Tak, magnesy neodymowe są bezpieczne dla zdrowia, jeśli są odpowiednio użytkowane. Należy jednak pamiętać, że niektóre magnesy neodymowe są bardzo silne i mogą być niebezpieczne, jeśli są połykane lub wchodzą w kontakt z ciałem w nieodpowiedni sposób.
Temperatura wpływa na właściwości magnetyczne magnesów. Magnesy neodymowe mogą osłabnąć przy wysokich temperaturach. Zakres pracy wynosi od -130°C do nawet 230°C w zależności od rodzaju magnesu.
Magnesy neodymowe chronione powłoką dla zwiększenia trwałości. Najczęściej stosuje się powłoki trójwarstwowe, które zwiększają odporność na wilgoć. Więcej w dziale technologia.
Magnesy neodymowe mogą ulec uszkodzeniu przez wilgoć. Długotrwała ekspozycja z wilgotnym środowiskiem może prowadzić do utleniania, chyba że magnes posiada odpowiednią warstwę zabezpieczającą. Więcej o zabezpieczaniu magnesów przed wilgocią znajdziesz w dziale ochrona przed wilgocią.
Magnesy neodymowe składają się głównie z neodymu, żelaza i boru. Bez ochrony, ich żelazo szybko ulega korozji, szczególnie w wilgotnym środowisku. W celu ochrony, większość magnesów neodymowych otrzymuje specjalną warstwę ochronną, najczęściej niklową, co chroni je przed utlenianiem. Powłoki plastikowe i złote również są stosowane, choć rzadziej.
Magnesy neodymowe są bardzo mocne, znacznie przewyższając inne rodzaje magnesów. Ich siła może powodować zagrożenia, jeśli nie są odpowiednio użytkowane. Większe magnesy mogą nawet łamać kości, jeśli części ciała zostaną uwięzione między nimi. Zawsze stosuj środki ostrożności, aby uniknąć takich sytuacji. Obejrzyj ten film, aby zobaczyć przykłady: YouTube.
Magnesy mogą zaburzyć działanie smartfonów, zwłaszcza jeśli są silne. Oddziałują na kompasu, czujników Halla, a nawet elementów wyświetlacza.

Dla bezpieczeństwa unikaj przechowywania telefonu w pobliżu silnych magnesów. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.
Obróbka magnesów neodymowych mogą być ryzykowne. Powstałe resztki po obróbce zanieczyszczają urządzenia, co uszkadza sprzęt. Specyficzna struktura magnesów czyni proces bardziej wymagającym.
Większość ciał obcych, takich jak magnesy, połyka się bez powikłań i przechodzi przez przewód pokarmowy. Zdecydowana większość przypadków kończy się naturalnym wydaleniem w ciągu krótkiego czasu. Jeśli dziecko połknie tylko jeden magnes lub monetę, wystarczy podać mu dużo wody i bułki, by pomóc w naturalnym wydaleniu. Kiedy dziecko połknie dwa magnesy, może wystąpić problem, ponieważ mogą się one połączyć w przewodzie pokarmowym. W takim przypadku należy udać się do lekarza i wykonać RTG, aby sprawdzić ich lokalizację i stan.

Najważniejsze jest, aby pozostać spokojnym i czekać na naturalny proces, zamiast szukać natychmiastowej pomocy. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.

Ciekawostki o magnesach neodymowych

Odkryj interesujące fakty dotyczące magnesów neodymowych – od ich historii po niezwykłe właściwości.

Magnes neodymowy to nie to samo co suplement diety, tj. MAGNEZ – to pierwiastek z grupy ziem rzadkich, ponieważ neodym znajduje się w układzie okresowym SI jako pierwiastek ziem rzadkich. Obecnie są one uznawane za najmocniejsze magnesy trwałe dostępne na rynku. Magnesy z neodymu są produkowane z połączenia pierwiastków takich jak neodym, żelazo i bor o strukturze Nd2Fe14B. Na chwilę obecną są to najmocniejsze magnesy produkowane w masowej skali.
Zalety magnesów neodymowych:
największa gęstość energii względem masy,
bardzo powolna utrata mocy – około 1% na 10 lat,
tania produkcja.
Magnes neodymowy wynalazł japoński naukowiec Masato Sagawa. On jako pierwszy podjął prace związane z magnetycznymi cechami pierwiastków ziem rzadkich prowadził w Fujitsu Laboratories przez około dziesięć lat. Później przeniósł się do Sumimoto Special Metals i uważa się, że właśnie tam, na początku lat 80-tych ostatecznie opracował technologię i stworzył współczesny spiekany magnes neodymowy oparty na związku Nd2Fe14B. Od tamtego czasu obserwuje się bardzo szybki rozwój tej dziedziny nauki.

Najczęstsze problemy użytkowników

Znajdź rozwiązania problemów, takich jak korozja, utrata siły magnetycznej czy trudności w montażu.

Magnesy przyczepiają się do lodówki ponieważ drzwi lodówki jest często wykonana z stali, która jest przyciągana przez magnesy. Współczesne lodówki mają stalowe powierzchnie na zewnętrznej części, które pozwalają na przyczepianiu się magnesów.
Wybór odpowiedniego magnesu neodymowego zależy od wielu czynników, które warto wziąć pod uwagę, aby zapewnić jego skuteczność i bezpieczeństwo:

Wskazówki wyboru:
Siła magnetyczna: Zastanów się, jaka moc jest potrzebna do Twojego zastosowania.
Rozmiar i kształt: Upewnij się, że magnes pasuje do miejsca, w którym będzie używany.
Powłoka ochronna: Wybierz magnes z powłoką odporną na korozję, np. niklowaną.
Temperatura pracy: Magnesy neodymowe mogą tracić swoje właściwości w wysokich temperaturach.
Zastosowanie: Sprawdź, czy magnes spełnia wymagania dla przemysłu, elektroniki lub domowych potrzeb.
Magnesy na lodówce mogą być uważane za szkodliwe ze względu na możliwość uszkodzenia drzwi lodówki, szczególnie gdy są regularnie przesuwane. Dodatkowo, bardzo silne magnesy potencjalnie mogą wpływać na układy elektroniczne w niektórych urządzeniach.
Należy usunąć magnesy z lodówki, jeżeli powodują one zarysować jej zewnętrzną część. Ponadto, bardzo mocne magnesy mogą powodować problemy z systemami elektronicznymi lodówki. Niekiedy zaleca się zdjęcie ich, aby zapobiec trwałym zniszczeniom, szczególnie jeśli są one przesuwane po drzwiach w sposób nieostrożny.
Łowienie magnesem jest dozwolone w Polsce, choć brak szczegółowych regulacji może powodować niejasności. W innych krajach kwestie te reguluje prawo lokalne:
W Stanach Zjednoczonych ogólnie rzecz biorąc, łowienie magnesem jest dozwolone z wyjątkami, np. w Karolinie Południowej, gdzie prawo zakazuje usuwania artefaktów z wód stanowych.
W Indianie, od 2025 roku, wymagane jest uzyskanie pozwolenia na łowienie magnesem.
W Wielkiej Brytanii i USA istnieją ograniczenia dotyczące łowienia magnesem w kontekście usuwania historycznych artefaktów.
Aby uniknąć problemów, skonsultuj się z lokalnymi władzami przed rozpoczęciem takiej działalności.
Magnesy mogą być szkodliwe dla lodówki, jeśli zarysują jej powierzchnię. Ciągłe przesuwanie magnesów być może prowadzić do uszkodzenia powierzchni. Jednakże, zwykłe używanie magnesów rzadko jest przyczyną znaczących uszkodzeń.
Aby usunąć zabezpieczenia klipsowe z ubrania, możesz użyć magnesu do klipsów, takiego jak Magnes Ultra. Należy go przyłożyć do klipsa i delikatnie poruszaj, aż mechanizm się rozłączy.

Inne metody obejmują użycie narzędzi ręcznych lub zapalniczki, lutownicy podgrzewając plastik na wystającej części po czym kombinerkami lub nożyczkami rozsunąć plastik do odcięcia zabezpieczenia, może to uszkodzić ubranie.

Jeśli zabezpieczenie używa taśmy, spróbuj delikatnie je odkleić, podgrzewając go np. suszarką używając np. ew. delikatnych narzędzi.

W przypadku trudniejszych zabezpieczeń, skonsultuj się z działem pomocy w sklepie. Więcej informacji znajdziesz na stronie klipsy antykradzieżowe.
Magnesy mogą nie przyciągać skutecznie, jeśli powierzchnia nie jest odpowiednia lub istnieje bariera między magnesem a powierzchnią. Sprawdź szczegóły w naszym przewodniku powłoki.
Nie zaleca się umieszczania magnesów na lodówce, gdyż mogą one uszkodzić jej wykończenie. Co więcej, masywne magnesy mogą deformować cienkie metalowe powierzchnie lodówek.
Magnesy mogą niszczyć lodówkę, jeśli ich przesuwanie prowadzi do zarysowaniami wykończenia lodówki. Ponadto, bardzo silne magnesy mogą zakłócać systemy elektroniczne w niektórych nowoczesnych lodówkach.
Jeśli planujesz poszukiwania z użyciem magnesów neodymowych, istnieje kilka ważnych rzeczy, o których musisz pamiętać przy wyborze odpowiedniego modelu.
Po pierwsze, magnesy neodymowe można podzielić na dwa typy: ze względu na konstrukcję i sposób mocowania liny. Jeśli chodzi o mocowanie, magnesy montowane od góry sprawdzą się w łowieniu z pomostów, mostów czy też do sprawdzania studni. Są one również idealne do łowienia z łodzi.
Modele takie jak DHIT Magnet GOLD występują w pięciu mocach od 120 kg do 600 kg. Natomiast magnesy z podwójnym mocowaniem, takie jak DHIT Magnet GOLD, są najbardziej uniwersalne i pozwalają na łowienie zarówno z góry, jak i z boku (dwa uchwyty można śrubą złączyć po bokach i szukać - łowić - parami).
Jeśli chodzi o popularność, najczęściej wybieranymi modelami są: F200x2 GOLD, F300x2 GOLD oraz F550x2. Jeśli masz wątpliwości co do wyboru odpowiedniego magnesu, zachęcamy do skontaktowania się z nami. Chętnie doradzimy i pomożemy wybrać model, który najlepiej spełni Twoje oczekiwania i cele.
Więcej informacji o magnesach do poszukiwań w wodzie znajdziesz na stronie jaki magnes do poszukiwań? lub kategorii magnesy do poszukiwań.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98