Potężne magnesy neodymowe: płytkowe i walcowe

Szukasz potężnej mocy w małym rozmiarze? Posiadamy w sprzedaży kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do zastosowań domowych, garażu oraz modelarstwa. Sprawdź naszą ofertę z szybką wysyłką.

sprawdź katalog magnesów

Zestawy do magnet fishing (hobbystów)

Zacznij swoje hobby związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na magazynach. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz reklam.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 10x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010006

GTIN/EAN: 5906301810056

5.00

Średnica Ø

10 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

1.18 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.27 kg / 12.50 N

Indukcja magnetyczna

230.11 mT / 2301 Gs

Powłoka

[NiCuNi] nikiel

0.467 z VAT / szt. + cena za transport

0.380 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.380 ZŁ
0.467 ZŁ
cena od 2000 szt.
0.334 ZŁ
0.411 ZŁ
cena od 4000 szt.
0.323 ZŁ
0.397 ZŁ
Nie wiesz jaki magnes kupić?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 ewentualnie napisz przez formularz kontaktowy przez naszą stronę.
Moc oraz wygląd magnesu obliczysz u nas w modułowym kalkulatorze.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Parametry techniczne - MW 10x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 10x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010006
GTIN/EAN 5906301810056
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 10 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 1.18 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.27 kg / 12.50 N
Indukcja magnetyczna ~ ? 230.11 mT / 2301 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 10x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - raport

Przedstawione wartości są wynik analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 10x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 2300 Gs
230.0 mT
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
słaby uchwyt
1 mm 1974 Gs
197.4 mT
0.94 kg / 2.06 lbs
935.3 g / 9.2 N
słaby uchwyt
2 mm 1570 Gs
157.0 mT
0.59 kg / 1.31 lbs
592.1 g / 5.8 N
słaby uchwyt
3 mm 1194 Gs
119.4 mT
0.34 kg / 0.75 lbs
342.3 g / 3.4 N
słaby uchwyt
5 mm 661 Gs
66.1 mT
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
słaby uchwyt
10 mm 178 Gs
17.8 mT
0.01 kg / 0.02 lbs
7.6 g / 0.1 N
słaby uchwyt
15 mm 66 Gs
6.6 mT
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
słaby uchwyt
20 mm 31 Gs
3.1 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
słaby uchwyt
30 mm 10 Gs
1.0 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt

Tabela 2: Siła równoległa ześlizgu (ściana)
MW 10x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.25 kg / 0.56 lbs
254.0 g / 2.5 N
1 mm Stal (~0.2) 0.19 kg / 0.41 lbs
188.0 g / 1.8 N
2 mm Stal (~0.2) 0.12 kg / 0.26 lbs
118.0 g / 1.2 N
3 mm Stal (~0.2) 0.07 kg / 0.15 lbs
68.0 g / 0.7 N
5 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 10x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.38 kg / 0.84 lbs
381.0 g / 3.7 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.13 kg / 0.28 lbs
127.0 g / 1.2 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.64 kg / 1.40 lbs
635.0 g / 6.2 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 10x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.13 kg / 0.28 lbs
127.0 g / 1.2 N
1 mm
25%
0.32 kg / 0.70 lbs
317.5 g / 3.1 N
2 mm
50%
0.64 kg / 1.40 lbs
635.0 g / 6.2 N
3 mm
75%
0.95 kg / 2.10 lbs
952.5 g / 9.3 N
5 mm
100%
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
10 mm
100%
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
11 mm
100%
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
12 mm
100%
1.27 kg / 2.80 lbs
1270.0 g / 12.5 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 10x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.27 kg / 2.80 lbs
1270.0 g / 12.5 N
OK
40 °C -2.2% 1.24 kg / 2.74 lbs
1242.1 g / 12.2 N
OK
60 °C -4.4% 1.21 kg / 2.68 lbs
1214.1 g / 11.9 N
80 °C -6.6% 1.19 kg / 2.62 lbs
1186.2 g / 11.6 N
100 °C -28.8% 0.90 kg / 1.99 lbs
904.2 g / 8.9 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 10x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.56 kg / 5.65 lbs
3 867 Gs
0.38 kg / 0.85 lbs
384 g / 3.8 N
N/A
1 mm 2.25 kg / 4.96 lbs
4 312 Gs
0.34 kg / 0.74 lbs
338 g / 3.3 N
2.03 kg / 4.46 lbs
~0 Gs
2 mm 1.89 kg / 4.16 lbs
3 948 Gs
0.28 kg / 0.62 lbs
283 g / 2.8 N
1.70 kg / 3.74 lbs
~0 Gs
3 mm 1.52 kg / 3.36 lbs
3 548 Gs
0.23 kg / 0.50 lbs
229 g / 2.2 N
1.37 kg / 3.02 lbs
~0 Gs
5 mm 0.92 kg / 2.02 lbs
2 750 Gs
0.14 kg / 0.30 lbs
137 g / 1.3 N
0.82 kg / 1.82 lbs
~0 Gs
10 mm 0.21 kg / 0.47 lbs
1 322 Gs
0.03 kg / 0.07 lbs
32 g / 0.3 N
0.19 kg / 0.42 lbs
~0 Gs
20 mm 0.02 kg / 0.03 lbs
355 Gs
0.00 kg / 0.01 lbs
2 g / 0.0 N
0.01 kg / 0.03 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
33 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
20 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
13 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
5 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 10x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.0 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Immobilizer 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 33.21 km/h
(9.22 m/s)
0.05 J
30 mm 57.31 km/h
(15.92 m/s)
0.15 J
50 mm 73.98 km/h
(20.55 m/s)
0.25 J
100 mm 104.63 km/h
(29.06 m/s)
0.50 J

Tabela 9: Odporność na korozję
MW 10x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MW 10x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 097 Mx 21.0 µWb
Współczynnik Pc 0.29 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 10x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.27 kg Standard
Woda (dno rzeki) 1.45 kg
(+0.18 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010006-2026
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Zobacz też inne oferty

Oferowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø10x2 mm gwarantuje najwyższą gęstość energii. Komponent MW 10x2 / N38 charakteryzuje się tolerancją ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 1.27 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 12.50 N przy wadze zaledwie 1.18 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego precyzyjnego komponentu. Dla zapewnienia stabilności w automatyce, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najczęściej wybierany standard dla profesjonalnych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø10x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø10x2 mm, co przy wadze 1.18 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.27 kg (siła ~12.50 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 2 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety neodymowych magnesów Nd2Fe14B.

Zalety

Oprócz niezwykłą energią, te produkty posiadają szereg innych zalet::
  • Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
  • Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
  • Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Charakterystyka udźwigu

Udźwig maksymalny dla magnesu neodymowego – od czego zależy?

Moc magnesu została wyznaczona dla warunków idealnego styku, uwzględniającej:
  • na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
  • posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
  • z powierzchnią idealnie równą
  • w warunkach idealnego przylegania (powierzchnia do powierzchni)
  • podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
  • w standardowej temperaturze otoczenia

Udźwig magnesu w użyciu – kluczowe czynniki

W praktyce, rzeczywisty udźwig jest determinowana przez kilku kluczowych aspektów, wymienionych od kluczowych:
  • Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
  • Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
  • Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.

Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.

Środki ostrożności podczas pracy przy magnesach neodymowych
Wpływ na smartfony

Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.

To nie jest zabawka

Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.

Urządzenia elektroniczne

Potężne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.

Ostrzeżenie dla alergików

Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.

Kruchy spiek

Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.

Implanty kardiologiczne

Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę implantu.

Świadome użytkowanie

Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.

Zagrożenie zapłonem

Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.

Limity termiczne

Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Niebezpieczeństwo przytrzaśnięcia

Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!

Bezpieczeństwo! Dowiedz się więcej o zagrożeniach w artykule: BHP magnesów neodymowych.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98