magnesy neodymowe

Magnesy neodymowe co to? Wszystkie oferowane przez nas magnesy z neodymu można znaleźć na wykazie poniżej sprawdź ofertę magnesów

uchwyt z magnesem do poszukiwań w wodzie F200 GOLD z silnym uchem bocznym i liną

Gdzie zakupić mocny UM magnes neodymowy do poszukiwań? Uchwyty z magnesami w szczelnej i trwałej obudowie nadają się wyśmienicie do użytkowania w trudnych, wymagających warunkach pogodowych, w tym również w czasie opadów śniegu i deszczu zobacz ofertę...

magnesy z uchwytem

Magnetyczne uchwyty mogą być wykorzystywane do usprawnienia produkcji, eksploracji wody lub do znajdowania meteorytów ze złota. Mocowania to śruba 3x [M10] duża siła czytaj...

Przesyłka zamówienia zawsze tego samego dnia jeżeli zlecenie złożone jest przed godziną 14:00 w dni robocze.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Serdecznie witamy w naszym szczegółowym słowniku poświęconym fascynujący świat magnesów neodymowych. Jako wiodący ekspert w dostarczaniu wysokiej jakości rozwiązań magnetycznych, doskonale rozumiemy, jak istotne jest posiadanie gruntownej znajomości na temat podstawowych zagadnień z tej wyjątkowej dziedziny. Ten słownik został zaplanowany, aby stać się kluczowym źródłem informacji dla wszelkich zainteresowanych, zainteresowanego magnesami – niezależnie od tego, czy jesteś profesjonalistą branżowym, pasjonatem, czy kimś zainteresowanym wiedzy magnesów.

W naszym słowniku znajdziesz czytelne i dokładne wyjaśnienia ważnych zagadnień i konceptów związanych z magnesami neodymowymi. Od podstaw funkcjonowania pól magnetycznych i gęstości strumienia, przez zależności materiałowe, aż po gatunki magnesów i zaawansowane technologie magnetyczne – każda definicja została przygotowana dla poszerzeniu Twojej wiedzy oraz przystępności nawet najbardziej skomplikowanych koncepcji. Czy to, że badasz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik ułatwi Ci poznanie.

Zgłębiaj interesujący świat magnesów neodymowych z pewnością siebie. Rozwijaj swoje zrozumienie, odkrywaj nowe informacje i poznawaj zastosowania tych wyjątkowych materiałów, poznając definicje i koncepcje, które definiują ich funkcjonalność i wszechstronność. Ten słownik może być Twoim przewodnikiem w odkrywaniu nieustannie zmieniającego się świata technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń lub innym niemagnetycznym materiałem, która oddziela magnes od innego obiektu. Większa przerwa powoduje osłabienie pola magnetycznego. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, takie jak neodymowe magnesy, ma właściwości które zmieniają się w zależności od orientacji. Magnesy o preferencyjnym kierunku magnesowania są wydajniejsze od jednorodnych, ale ich magnesowanie odbywa się wyłącznie w jednym kierunku.
Wyżarzanie to metoda eliminacji naprężeń wewnętrznych w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w próżni, aby zapobiec degradacji materiału. Wyżarzanie poprawia strukturę i pozwala uzyskać lepszą wydajność w zastosowaniach.
Magnesowanie osiowe oznacza, że bieguny magnetyczne są rozmieszczone wzdłuż osi magnesu, a linie siły magnetycznej przebiegają wzdłuż długości magnesu. Jest to popularne w magnesach cylindrycznych oraz sferycznych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to natężenie pola przechodzącego przez obiekt. Jest mierzona lub gaussach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to natężenie pola zewnętrznego, a M to magnetyzacja.
Pętla histerezy to wykres zależności między indukcją magnetyczną (B) a natężeniem pola magnetycznego (H). Pozwala określić takie właściwości jak energia strat magnetycznych. Pętla histerezy stanowi podstawę przy ocenie materiałów stosowanych w transformatorach.
Indukcja remanentna Bd to pozostałość, które utrzymuje się w materiale po usunięciu siły magnesowania. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do zachowania magnetyzmu.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu układów elektromagnetycznych.
Bg oznacza poziom pola magnetycznego w przerwie powietrznej. Jest to ważny element przy projektowaniu urządzeń takich jak czujniki i aktuatory. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. jest stosowany głównie w magnetyzmie do opisu właściwości materiałów. Pomimo że został zastąpiony, C.G.S. wciąż znajduje zastosowanie w danych dotyczących magnetyzmu. Jednostki w tym systemie obejmują oraz długość, masę i czas.
Obwód zamknięty odnosi się do konfiguracji, w której bez przerw lub zakłóceń. Wykorzystuje się materiały o wysokiej przenikalności, które zapewniają minimalizując straty strumienia. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to wymagana siła do redukcji indukcji magnetycznej do zera. Parametr ten mierzy trwałość magnetycznych właściwości. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Wysoka wartość koercji wskazuje na trwałość magnetycznych właściwości materiału. Wpływa również na stabilność magnetyczną w zmiennych warunkach.
Koercja wewnętrzna określa zdolność materiału do zachowania magnetyzmu. Mierzy siłę demagnetyzującą potrzebną do zredukowania magnetyzacji wewnętrznej do zera. Materiały o wysokiej koercji zapewniają stabilność magnetyczną.
Temperatura Curie to punkt, w którym przechodzą w stan paramagnetyczny. Po przekroczeniu tej temperatury materiał przestaje wykazywać silne magnetyczne zachowania. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu osłabienia resztkowej indukcji w materiale. Metody obejmują stosowanie zmiennych pól magnetycznych, ogrzewanie powyżej temperatury Curie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak koercja i indukcja remanentna. Jest to narzędzie używane w projektowaniu magnetycznych układów.
Siła rozmagnesowująca odnosi się do zewnętrznego pola magnetycznego, które wprowadza rozmagnesowanie. Pozwala to na manipulację właściwościami magnetycznymi.
Rozmagnesowany materiał to taki, w którym całkowicie usunięto resztkową magnetyzację. Stan ten osiąga się poprzez lub inne techniki rozmagnesowania, np. ogrzewanie. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, wynosząca średnio około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Na przykład, magnes o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Znajomość gęstości magnesu pozwala lepiej przewidywać jego siłę magnetyczną i trwałość.
Materiał diamagnetyczny wykazuje słabe odpychanie od pola magnetycznego. Pod wpływem pola zewnętrznego powodujące odpychanie. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to w linii prostej na powierzchni lub innego geometrycznego kształtu. Jest to kluczowy parametr przy precyzyjnym dopasowaniu komponentów.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są często stosowane w zastosowaniach wymagających interakcji radialnych lub obrotowych.
Tolerancja wymiarowa określa zakres zmienności wymiarów magnesu. Jest kluczowa przy precyzyjnym dopasowaniu.
Wymiary odnoszą się do takich jak długość, szerokość, wysokość lub średnica magnesu. Precyzja wymiarowa jest ważne w projektowaniu układów.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na zachowanie magnetyczne materiału.
Domeny to mikroskopijne obszary, w których tworząc lokalne pola magnetyczne. Mogą być zmieniane przez czynniki fizyczne i mechaniczne.

Litera: E

Prądy wirowe to przepływy elektryczności powstałe w materiałach przewodzących podczas zmian w polu magnetycznym. Powodują one straty energii, nagrzewanie lub efekty oporowe. Stosowanie optymalizacji konstrukcji minimalizuje ich wpływ i zwiększa wydajność.
Elektromagnes to magnes bazujący na przewodniku elektrycznym, takim jak cewka. Zarządzanie prądem pozwala kontrolować pole magnetyczne. Elektromagnesy są szeroko stosowane w takich jak silniki, generatory czy systemy MRI.
Energia magnetyczna to wskaźnik zdolności magnesu do dostarczania energii. Obliczana jako iloczyn indukcji magnetycznej (Bd) i siły magnesowania (Hd). Wyrażana w różnych jednostkach. Jest ważnym wskaźnikiem przy ocenie ich efektywności w aplikacjach.
Mierzona jako iloczyn remanencji i koercji materiału. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to ceramiczne materiały magnetyczne. Są cenione za swoje właściwości wysokoczęstotliwościowe. Używane w zastosowaniach wymagających małych strat prądów wirowych.
Materiał ferromagnetyczny charakteryzuje się zdolnością do wzmacniania strumienia magnetycznego. Atomy w takim materiale wytwarzając silne pole magnetyczne. Przykłady to oraz ich stopy. Stanowią podstawę wielu zastosowań magnetycznych dzięki ich trwałym właściwościom magnetycznym.
Gęstość strumienia magnetycznego, oznaczana jako B, określa siłę pola magnetycznego. Mierzona w standardowych jednostkach magnetycznych. Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Miernik strumienia magnetycznego służy do ilościowego określenia pola magnetycznego. Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest ważnym narzędziem inżynierskim.

Litera: G

Gauss to jednostka miary indukcji magnetycznej. Jeden Gauss (G) odpowiada pojęciu indukcji magnetycznej w mniejszych skalach. Jednostka historycznie popularna.
Gaussomierz to przyrząd określający indukcję w punktach przestrzeni. Stosuje sensory efektu Halla. Pomocny w diagnostyce magnetycznej.
Gilbert to nazwa pochodzi od Williama Gilberta, pioniera badań magnetycznych. Jeden Gilbert odpowiada natężeniu potrzebnemu do wytworzenia strumienia magnetycznego w określonym obwodzie.
Klasa magnesu odnosi się do właściwości i wydajności w określonych zastosowaniach. Wyższe klasy oferują lepsze pole magnetyczne i stabilność.

Litera: H

Czujnik Halla działa na zasadzie efektu Halla, który polega na indukowaniu napięcia w przewodniku w obecności pola magnetycznego. Czujniki Halla są szeroko stosowane w elektronice, takich jak systemy ABS w pojazdach.
Siła koercji (Hc) oznacza natężenie pola magnetycznego wymagane do zmniejszenia indukcji szczątkowej (Br) materiału do zera. Wyrażana w jednostkach SI. Wyższe wartości Hc wskazują na odporność na wpływy zewnętrzne.
Hd to natężenie pola magnetycznego potrzebne do osiągnięcia określonej indukcji remanentnej (Bd). Mierzona w różnych jednostkach magnetycznych.
Magnes o wysokim gradiencie pola wytwarza silne i szybko zmieniające się pole magnetyczne. Zastosowania obejmują czy badania naukowe wymagające zaawansowanych parametrów pola.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy projektowaniu systemów wymagających dużych pól magnetycznych.
Pole jednorodne charakteryzuje się stałą wartością i kierunkiem. Jest kluczowe w zastosowaniach wymagających precyzyjnego pola.
Magnes podkowiasty ma bieguny ustawione blisko siebie. oraz zastosowaniach wymagających skupionego pola.
Efektywna siła magnesowania (Hs) to parametr niezbędny w analizie właściwości magnetycznych materiału. Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Wykres histerezy, zwany również permeametrem, przedstawia zmiany indukcji magnetycznej (B) w funkcji siły magnesowania (H). Stosowany w kontroli jakości, analizie strat energetycznych.
Pętla histerezy to graficzne przedstawienie relacji między indukcją magnetyczną (B) a siłą magnesowania (H). Dostarcza informacji o zachowaniu materiału podczas cykli magnesowania.
Histereza odnosi się do cechy materiałów magnetycznych. Straty histerezowe to przemiany energii w ciepło. Minimalizacja strat histerezowych poprawia efektywność układów magnetycznych.

Litera: I

Średnica wewnętrzna (ID) to wymiar wewnętrzny obiektu pustego w środku, np. magnesu, rury czy pierścienia. Jest istotnym parametrem w projektowaniu układów magnetycznych.
Indukcja magnetyczna (B) reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Wyrażana w Teslach (T) lub Gaussach (G). ważna w charakterystyce materiałów magnetycznych.
Straty nieodwracalne to skutki działania wysokich temperatur, stresu mechanicznego lub demagnetyzujących pól. Powodują spadek właściwości magnetycznych i wydajności materiału.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. Często porównywany z materiałami anizotropowymi, które mają zależne właściwości kierunkowe.

Litera: K

Przytrzymywacz magnetyczny to akcesorium zapobiegające rozmagnesowaniu magnesów. Zapewnia niską oporność magnetyczną dla strumienia. Stosowany głównie z historycznymi modelami magnesów.
Kilogauss (kG) to jednostka używana do pomiaru gęstości strumienia magnetycznego. Jeden kilogauss (1 kG) odpowiada wartości 1000 G. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia graficzny związek między indukcją remanentną (Bd) a siłą rozmagnesowującą (Hd). jest użyteczna w optymalizacji aplikacji magnetycznych.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). Wykorzystywany historycznie do kompasów.

Litera: M

Magnes to materiał przyciągający lub odpychający inne materiały magnetyczne. Może być naturalny, jak magnetyt, lub sztuczny, np. neodymowy.
Zestaw magnetyczny to konstrukcja projektowana w celu uzyskania określonych właściwości magnetycznych. Wykorzystywany w sensorach, separatorach magnetycznych.
Oś magnetyczna to ścieżka preferowanego przepływu strumienia magnetycznego. kluczowa dla analizy zachowania magnesu i jego interakcji z innymi elementami magnetycznymi.
Obwód magnetyczny to ścieżka, przez którą przepływa strumień magnetyczny. jest kluczowy w projektowaniu urządzeń magnetycznych.
Energia magnetyczna to energia zgromadzona w polu magnetycznym. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to obszar, w którym materiały magnetyczne lub ładunki elektryczne podlegają sile magnetycznej. tworzone przez magnesy lub prądy elektryczne.
Natężenie pola magnetycznego (H) to intensywność pola magnetycznego w obwodzie. wyrażane w amperach na metr (A/m).
Strumień magnetyczny to miara całkowitego pola magnetycznego w danym regionie. kluczowy w analizie obwodów magnetycznych i indukcji.
Magnetic flux density, oznaczana jako B, jest miarą siły lub koncentracji pola magnetycznego. Reprezentuje liczbę linii pola magnetycznego przecinających powierzchnię.

Oblicza się ją za pomocą równania:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Gęstość strumienia magnetycznego jest kluczowa w projektowaniu urządzeń takich jak silniki, generatory czy czujniki magnetyczne.
Pętla histerezy ilustruje zachowanie materiału magnetycznego podczas cykli magnesowania i rozmagnesowywania. Materiał z węższą pętlą ma mniejsze straty energii.
Indukcja magnetyczna mierzy ilość strumienia magnetycznego przechodzącego przez jednostkę powierzchni. Wyższe wartości indukcji wskazują na silniejsze pole magnetyczne.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to wyimaginowana krzywa reprezentująca kierunek i kształt pola magnetycznego. linie tworzą zamknięte pętle dla większości magnesów.
Ścieżka magnetyczna odnosi się do konfiguracji obejmującej materiały magnetyczne, szczeliny powietrzne i inne elementy. Odpowiednio zaprojektowana ścieżka zapewnia efektywną transmisję energii magnetycznej.
Przenikalność magnetyczna określa zdolność materiału do przewodzenia strumienia magnetycznego. Materiały o wysokiej przenikalności są efektywniejsze w koncentracji pola magnetycznego.
Każdy magnes ma biegun północny i południowy. Zrozumienie interakcji między biegunami jest kluczowe w projektowaniu układów magnetycznych.
Nasycenie magnetyczne określa maksymalne natężenie pola magnetycznego, jakie może osiągnąć materiał. Ma również znaczenie w procesie projektowania obwodów magnetycznych.
Magnesowanie to proces nadawania materiałowi właściwości magnetycznych przez uporządkowanie domen magnetycznych. Kontrola procesu magnesowania umożliwia uzyskanie optymalnych parametrów.
Magnetyzacja odnosi się do procesu wyrównywania lub indukowania pola magnetycznego w materiale. Można ją osiągnąć poprzez kontakt z polem magnetycznym, przepływ prądu elektrycznego lub inne magnesy.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia zależność między natężeniem pola magnetycznego (H) a indukcją magnetyczną (B). Dostarczają istotnych informacji o charakterystyce materiału, jego nasyceniu i stabilności magnetycznej.
Namagnesowany oznacza stan materiału, w którym posiada on pole magnetyczne lub został namagnesowany. Można go uzyskać poprzez ekspozycję na pole magnetyczne, kontakt z magnesami lub przepływ prądu elektrycznego.
Siła magnetomotoryczna (mmf) to miara różnicy potencjałów magnetycznych. Analogiczna do siły elektromotorycznej (EMF) w obwodach elektrycznych.
Materiał w kontekście magnetyzmu odnosi się do substancji posiadającej właściwości magnetyczne lub podatnej na wpływ pola magnetycznego. materiały ferromagnetyczne, takie jak żelazo, mogą być trwale namagnesowane.
Maximum energy product, oznaczany jako BHmax, reprezentuje maksymalną zdolność magnesu do gromadzenia i uwalniania energii magnetycznej.

Wzór opisujący BHmax przedstawia się następująco:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Dla magnesu o wartości B = 1,2 T i H = 800 kA/m, BHmax wynosi 960 kJ/m³.

Wysoka wartość BHmax jest charakterystyczna dla magnesów neodymowych, co czyni je niezastąpionymi w zaawansowanych zastosowaniach przemysłowych.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. Zapewnia stabilność i wydajność materiału w określonych warunkach pracy.
Makswell to reprezentuje ilość strumienia magnetycznego przechodzącego przez powierzchnię jednego centymetra kwadratowego w polu magnetycznym o sile jednego gausa. kluczowa w historycznych i naukowych zastosowaniach magnetycznych.
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania ilości energii magnetycznej przechowywanej w magnesie na jednostkę objętości. ta jednostka pozwala na ocenę potencjału magnetycznego magnesów w skomplikowanych obwodach magnetycznych.
Monopol magnetyczny odnosi się do hipotetycznego pojedynczego bieguna magnetycznego, który istnieje samodzielnie jako północny lub południowy biegun magnetyczny. W rzeczywistości bieguny magnetyczne zawsze występują w parach, jednak monopole mogą istnieć w pewnych modelach teoretycznych.

Litera: N

Klasa N odnosi się do oznaczenia liczbowego, np. N35, N42 czy N52, które wskazuje maksymalny iloczyn energii magnetycznej (BHmax). klasy te pomagają użytkownikom w wyborze odpowiednich magnesów do specyficznych zastosowań.
Biegun północny to jeden z dwóch podstawowych biegunów magnetycznych magnesu. powiązany z kierunkiem wychodzących linii pola magnetycznego.

Litera: O

Oersted to jednostka używana do mierzenia natężenia pola magnetycznego (H). jednostka używana głównie w systemie CGS.
Obwód otwarty odnosi się do powodując przerwanie ścieżki strumienia magnetycznego. W takim stanie linie pola magnetycznego nie mogą tworzyć zamkniętej pętli, co skutkuje osłabieniem pola magnetycznego.
Orientacja odnosi się do ustawienia lub wyrównania magnesu, materiału magnetycznego lub elementu magnetycznego względem osi odniesienia. Prawidłowa orientacja jest kluczowa dla osiągnięcia pożądanych właściwości magnetycznych i optymalizacji systemów magnetycznych.

Litera: P

Materiały paramagnetyczne to stają się namagnesowane w kierunku pola zewnętrznego dzięki wyrównaniu momentów magnetycznych atomów lub cząsteczek. przykłady to aluminium, mangan i tlen.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. przykładami są aluminium, platyna i tlen.
Magnes trwały to generuje trwałe pole magnetyczne bez potrzeby zewnętrznego pola magnetycznego. Jest wykonany z materiałów o silnych właściwościach magnetycznych, takich jak żelazo, nikiel czy stopy kobaltu.
Są wykonane z materiałów o wysokiej retencji magnetycznej. Znajdują zastosowanie w urządzeniach wymagających stałego pola magnetycznego, takich jak głośniki, silniki i generatory.
Przenikalność magnetyczna to właściwość materiału określająca jego zdolność do przewodzenia strumienia magnetycznego. Wysoka przenikalność umożliwia efektywne przenoszenie strumienia magnetycznego, co jest kluczowe w projektowaniu obwodów magnetycznych.
Permeance, oznaczana symbolem P, jest miarą zdolności materiału do przewodzenia strumienia magnetycznego.

Przenikalność można obliczyć za pomocą wzoru:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Przykładowo, materiał o dużym polu przekroju i krótkiej ścieżce magnetycznej wykazuje wysoką przenikalność, co czyni go wydajnym w zastosowaniach magnetycznych.

Permeance jest kluczowym parametrem w projektowaniu obwodów magnetycznych, szczególnie w aplikacjach wymagających minimalnych strat magnetycznych.
wskazuje nachylenie linii pracy na krzywej rozmagnesowania. jest istotny przy projektowaniu efektywnych obwodów magnetycznych.
Powłoka lub platerowanie to proces nakładania warstwy ochronnej na powierzchnię magnesów neodymowych. Dzięki powłokom magnesy mogą być używane w trudnych warunkach środowiskowych.
bieguny o tej samej polaryzacji odpychają się, a o przeciwnych przyciągają. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
bieguny te determinują kierunek siły magnetycznej i interakcje między magnesami. określają sposób zachowania magnesów w polach zewnętrznych.
Siła przyciągania, czasem określana jako siła chwytu, opisuje siłę wymaganą do oddzielenia magnesu od powierzchni ferromagnetycznej. Można ją oszacować za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: Jeśli gęstość strumienia magnetycznego wynosi 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. stanowią podstawę innowacyjnych rozwiązań technologicznych.
Wykonane są z pierwiastków ziem rzadkich, takich jak neodym, dysproz czy prazeodym. Ich wysoka wydajność sprawia, że są niezastąpione w wielu zastosowaniach.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. Magnesy neodymowe wykazują wysoką względną przenikalność, co umożliwia efektywne projektowanie obwodów magnetycznych.
Opór magnetyczny, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Wzór matematyczny dla oporu magnetycznego to:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Im większy przekrój magnetyczny lub przenikalność, tym mniejszy opór magnetyczny.

Znajomość oporu magnetycznego umożliwia optymalizację działania systemów takich jak elektromagnesy, transformatory czy silniki elektryczne.
Reluktancja to miara oporu, jaki obwód magnetyczny stawia przepływowi strumienia magnetycznego. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Remanencja, oznaczana często jako Bd, to miara magnetyzmu resztkowego, który pozostaje w magnesie neodymowym po jego nasyceniu i usunięciu zewnętrznego pola magnetycznego. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Zjawisko to wynika z przeciwnych pól magnetycznych generowanych przez magnesy, które się nawzajem odpychają. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Obejmuje wykorzystanie materiałów ferromagnetycznych lub przewodników magnetycznych do prowadzenia pola magnetycznego. Jest kluczowym elementem w projektowaniu efektywnych obwodów magnetycznych.

Litera: S

Siła ścinania, oznaczana symbolem Fs, odnosi się do siły wymaganej do przesunięcia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Wzór dla siły ścinania to:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Przykładowo, dla F = 50 N i kąta nachylenia θ = 30°, siła ścinania wynosi około 28,9 N.

Siła ścinania jest istotnym czynnikiem w projektowaniu systemów magnetycznych, szczególnie tam, gdzie wymagana jest wysoka stabilność mechaniczna.
Biegun południowy jest jednym z dwóch podstawowych biegunów magnetycznych magnesu. Pole magnetyczne biegnie od bieguna północnego do południowego, co określa interakcje magnetyczne. Biegun południowy odgrywa kluczową rolę w układach magnetycznych i projektach wymagających precyzyjnego pozycjonowania.
Układanie w stos odnosi się do praktyki łączenia wielu magnesów neodymowych, aby stworzyć zestaw o zwiększonej całkowitej sile magnetycznej. To rozwiązanie pozwala na uzyskanie silniejszych interakcji magnetycznych w takich zastosowaniach, jak separatory magnetyczne, uchwyty czy czujniki.

Litera: T

Magnesy neodymowe mogą osiągać wysokie wartości gęstości strumienia, mierzone w teslach (T) lub militeslach (mT). Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Dzięki zdefiniowanemu kierunkowi magnesowania, magnesy anizotropowe osiągają większą efektywność. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co czyni je bardziej uniwersalnymi. Magnesy izotropowe są idealne do ogólnych zastosowań dzięki swojej uniwersalności.

Litera: W

Weber jest jednostką miary strumienia magnetycznego, która reprezentuje całkowitą liczbę linii pola magnetycznego przechodzących przez określoną powierzchnię. Weber jest kluczowym parametrem w ocenie i kwantyfikacji pól magnetycznych oraz strumieni w magnesach neodymowych.
Waga magnesu neodymowego jest istotnym parametrem wpływającym na jego zastosowania. Można ją łatwo obliczyć na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Dla magnesu o typowej gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Znajomość wagi jest kluczowa w projektach, gdzie ważna jest równowaga masy i siły magnetycznej.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98