MW 25x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010050
GTIN/EAN: 5906301810490
Średnica Ø
25 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
22.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.27 kg / 100.71 N
Indukcja magnetyczna
268.21 mT / 2682 Gs
Powłoka
[NiCuNi] nikiel
7.40 ZŁ z VAT / szt. + cena za transport
6.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie daj znać przez
formularz zapytania
na stronie kontakt.
Właściwości i kształt magnesu sprawdzisz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 25x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010050 |
| GTIN/EAN | 5906301810490 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 22.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.27 kg / 100.71 N |
| Indukcja magnetyczna ~ ? | 268.21 mT / 2682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe wartości stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 25x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2682 Gs
268.2 mT
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
miażdżący |
| 1 mm |
2535 Gs
253.5 mT
|
9.18 kg / 20.23 lbs
9177.2 g / 90.0 N
|
mocny |
| 2 mm |
2363 Gs
236.3 mT
|
7.97 kg / 17.57 lbs
7971.8 g / 78.2 N
|
mocny |
| 3 mm |
2176 Gs
217.6 mT
|
6.76 kg / 14.91 lbs
6761.0 g / 66.3 N
|
mocny |
| 5 mm |
1793 Gs
179.3 mT
|
4.59 kg / 10.13 lbs
4592.7 g / 45.1 N
|
mocny |
| 10 mm |
1013 Gs
101.3 mT
|
1.46 kg / 3.23 lbs
1464.5 g / 14.4 N
|
niskie ryzyko |
| 15 mm |
565 Gs
56.5 mT
|
0.46 kg / 1.00 lbs
455.3 g / 4.5 N
|
niskie ryzyko |
| 20 mm |
330 Gs
33.0 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
niskie ryzyko |
| 30 mm |
134 Gs
13.4 mT
|
0.03 kg / 0.06 lbs
25.6 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 25x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| 1 mm | Stal (~0.2) |
1.84 kg / 4.05 lbs
1836.0 g / 18.0 N
|
| 2 mm | Stal (~0.2) |
1.59 kg / 3.51 lbs
1594.0 g / 15.6 N
|
| 3 mm | Stal (~0.2) |
1.35 kg / 2.98 lbs
1352.0 g / 13.3 N
|
| 5 mm | Stal (~0.2) |
0.92 kg / 2.02 lbs
918.0 g / 9.0 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
292.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 25x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3081.0 g / 30.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.03 kg / 2.26 lbs
1027.0 g / 10.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5135.0 g / 50.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 25x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.13 lbs
513.5 g / 5.0 N
|
| 1 mm |
|
1.28 kg / 2.83 lbs
1283.8 g / 12.6 N
|
| 2 mm |
|
2.57 kg / 5.66 lbs
2567.5 g / 25.2 N
|
| 3 mm |
|
3.85 kg / 8.49 lbs
3851.3 g / 37.8 N
|
| 5 mm |
|
6.42 kg / 14.15 lbs
6418.7 g / 63.0 N
|
| 10 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 11 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 12 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 25x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
OK |
| 40 °C | -2.2% |
10.04 kg / 22.14 lbs
10044.1 g / 98.5 N
|
OK |
| 60 °C | -4.4% |
9.82 kg / 21.65 lbs
9818.1 g / 96.3 N
|
|
| 80 °C | -6.6% |
9.59 kg / 21.15 lbs
9592.2 g / 94.1 N
|
|
| 100 °C | -28.8% |
7.31 kg / 16.12 lbs
7312.2 g / 71.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 25x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.76 kg / 47.98 lbs
4 291 Gs
|
3.26 kg / 7.20 lbs
3264 g / 32.0 N
|
N/A |
| 1 mm |
20.66 kg / 45.54 lbs
5 225 Gs
|
3.10 kg / 6.83 lbs
3098 g / 30.4 N
|
18.59 kg / 40.98 lbs
~0 Gs
|
| 2 mm |
19.45 kg / 42.87 lbs
5 070 Gs
|
2.92 kg / 6.43 lbs
2917 g / 28.6 N
|
17.50 kg / 38.58 lbs
~0 Gs
|
| 3 mm |
18.18 kg / 40.09 lbs
4 902 Gs
|
2.73 kg / 6.01 lbs
2727 g / 26.8 N
|
16.36 kg / 36.08 lbs
~0 Gs
|
| 5 mm |
15.60 kg / 34.39 lbs
4 541 Gs
|
2.34 kg / 5.16 lbs
2340 g / 23.0 N
|
14.04 kg / 30.95 lbs
~0 Gs
|
| 10 mm |
9.73 kg / 21.46 lbs
3 587 Gs
|
1.46 kg / 3.22 lbs
1460 g / 14.3 N
|
8.76 kg / 19.31 lbs
~0 Gs
|
| 20 mm |
3.10 kg / 6.84 lbs
2 025 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.28 lbs
409 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.11 kg / 0.25 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
268 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
183 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
131 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
72 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 25x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 25x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.60 km/h
(6.56 m/s)
|
0.47 J | |
| 30 mm |
37.72 km/h
(10.48 m/s)
|
1.21 J | |
| 50 mm |
48.63 km/h
(13.51 m/s)
|
2.02 J | |
| 100 mm |
68.77 km/h
(19.10 m/s)
|
4.03 J |
Tabela 9: Odporność na korozję
MW 25x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 25x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 740 Mx | 147.4 µWb |
| Współczynnik Pc | 0.34 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 25x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.27 kg | Standard |
| Woda (dno rzeki) |
11.76 kg
(+1.49 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.34
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Bezpieczny dystans
Ekstremalne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Łatwopalność
Proszek generowany podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Uczulenie na powłokę
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Siła neodymu
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Tylko dla dorosłych
Silne magnesy to nie zabawki. Inhalacja kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
