MW 25x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010050
GTIN: 5906301810490
Średnica Ø
25 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
22.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.42 kg / 72.79 N
Indukcja magnetyczna
268.21 mT
Powłoka
[NiCuNi] nikiel
7.40 ZŁ z VAT / szt. + cena za transport
6.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń już teraz
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz zapytania
na naszej stronie.
Właściwości i budowę magnesów neodymowych obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 25x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 25x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010050 |
| GTIN | 5906301810490 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 22.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.42 kg / 72.79 N |
| Indukcja magnetyczna ~ ? | 268.21 mT |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Dane Techniczne i Symulacja
Poniższe dane są wynikiem symulacji fizycznej. W warunkach realnych wyniki mogą odbiegać od symulacji.
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status Ryzyka |
|---|---|---|---|
| 0 mm |
2682 Gs
268.16 mT |
6.93 kg | Mocny |
| 1 mm |
2535 Gs
253.49 mT |
6.19 kg | Mocny |
| 2 mm |
2363 Gs
236.26 mT |
5.38 kg | Mocny |
| 5 mm |
1793 Gs
179.33 mT |
3.10 kg | Mocny |
| 10 mm |
1013 Gs
101.26 mT |
0.99 kg | Niskie ryzyko |
| 15 mm |
565 Gs
56.46 mT |
0.31 kg | Niskie ryzyko |
| 20 mm |
330 Gs
33.02 mT |
0.11 kg | Niskie ryzyko |
| 30 mm |
134 Gs
13.39 mT |
0.02 kg | Niskie ryzyko |
| 50 mm |
36 Gs
3.62 mT |
0.00 kg | Niskie ryzyko |
| Rodzaj powierzchni | Współczynnik tarcia | Max ciężar (kg) |
|---|---|---|
| Stal surowa | µ = 0.3 | 2.08 kg |
| Stal malowana (Standard) | µ = 0.2 | 1.39 kg |
| Stal tłusta/śliska | µ = 0.1 | 0.69 kg |
| Magnes z gumą antypoślizgową | µ = 0.5 | 3.46 kg |
| Grubość blachy (mm) | % Mocy | Realny Udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.69 kg |
| 1 mm |
|
1.73 kg |
| 2 mm |
|
3.46 kg |
| 5 mm |
|
6.93 kg |
| 10 mm |
|
6.93 kg |
| Temp. otoczenia (°C) | Strata mocy | Pozostały Udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% | 6.93 kg | OK |
| 40 °C | -2.2% | 6.77 kg | OK |
| 60 °C | -4.4% | 6.62 kg | OK |
| 80 °C | -6.6% | 6.47 kg | |
| 100 °C | -8.8% | 6.32 kg | |
| 120 °C | -11.0% | 6.17 kg |
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm | 10.40 kg | N/A |
| 2 mm | 8.07 kg | 7.53 kg |
| 5 mm | 4.65 kg | 4.34 kg |
| 10 mm | 1.48 kg | 1.39 kg |
| 20 mm | 0.17 kg | 0.15 kg |
| 50 mm | 0.00 kg | 0.00 kg |
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny Dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.50 mT) | 10.5 cm |
| Telefon / Smartfon | 20 Gs (2.00 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.00 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.00 mT) | 1.5 cm |
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm | 19.39 km/h | 0.32 J | |
| 30 mm | 30.98 km/h | 0.82 J | |
| 50 mm | 39.94 km/h | 1.36 J | |
| 100 mm | 56.48 km/h | 2.72 J |
Porady zakupowe
Zalety oraz wady neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok wysokiej mocy, magnesy te cechują się następującymi zaletami:
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
Siła trzymania 7.42 kg jest wartością teoretyczną maksymalną przeprowadzonego w warunkach wzorcowych:
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość to min. 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy bezpośrednim styku (brak farby)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
Podczas codziennego użytkowania, realna moc zależy od kilku kluczowych aspektów, wymienionych od najbardziej istotnych:
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Ogromna siła
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Przegrzanie magnesu
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Siła zgniatająca
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Nie zbliżaj do komputera
Nie przykładaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zachowaj ostrożność!
Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
