MP 24x16x2 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030495
GTIN/EAN: 5906301812364
Średnica
24 mm [±0,1 mm]
Średnica wewnętrzna Ø
16 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
3.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.94 kg / 9.22 N
Indukcja magnetyczna
101.91 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
3.69 ZŁ z VAT / szt. + cena za transport
3.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo skontaktuj się za pomocą
nasz formularz online
na stronie kontaktowej.
Moc oraz formę magnesów neodymowych zweryfikujesz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MP 24x16x2 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 24x16x2 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030495 |
| GTIN/EAN | 5906301812364 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 24 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 16 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 3.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.94 kg / 9.22 N |
| Indukcja magnetyczna ~ ? | 101.91 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Poniższe dane stanowią rezultat analizy matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MP 24x16x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5807 Gs
580.7 mT
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
niskie ryzyko |
| 1 mm |
5318 Gs
531.8 mT
|
0.79 kg / 1.74 lbs
788.4 g / 7.7 N
|
niskie ryzyko |
| 2 mm |
4833 Gs
483.3 mT
|
0.65 kg / 1.44 lbs
651.1 g / 6.4 N
|
niskie ryzyko |
| 3 mm |
4366 Gs
436.6 mT
|
0.53 kg / 1.17 lbs
531.5 g / 5.2 N
|
niskie ryzyko |
| 5 mm |
3517 Gs
351.7 mT
|
0.34 kg / 0.76 lbs
344.9 g / 3.4 N
|
niskie ryzyko |
| 10 mm |
1995 Gs
199.5 mT
|
0.11 kg / 0.24 lbs
111.0 g / 1.1 N
|
niskie ryzyko |
| 15 mm |
1168 Gs
116.8 mT
|
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
niskie ryzyko |
| 20 mm |
727 Gs
72.7 mT
|
0.01 kg / 0.03 lbs
14.7 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
332 Gs
33.2 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
106 Gs
10.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 24x16x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 1 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 3 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 24x16x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.47 kg / 1.04 lbs
470.0 g / 4.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 24x16x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 0.21 lbs
94.0 g / 0.9 N
|
| 1 mm |
|
0.24 kg / 0.52 lbs
235.0 g / 2.3 N
|
| 2 mm |
|
0.47 kg / 1.04 lbs
470.0 g / 4.6 N
|
| 3 mm |
|
0.71 kg / 1.55 lbs
705.0 g / 6.9 N
|
| 5 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 10 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 11 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 12 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MP 24x16x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
OK |
| 40 °C | -2.2% |
0.92 kg / 2.03 lbs
919.3 g / 9.0 N
|
OK |
| 60 °C | -4.4% |
0.90 kg / 1.98 lbs
898.6 g / 8.8 N
|
OK |
| 80 °C | -6.6% |
0.88 kg / 1.94 lbs
878.0 g / 8.6 N
|
|
| 100 °C | -28.8% |
0.67 kg / 1.48 lbs
669.3 g / 6.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 24x16x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
79.38 kg / 175.01 lbs
6 091 Gs
|
11.91 kg / 26.25 lbs
11908 g / 116.8 N
|
N/A |
| 1 mm |
72.89 kg / 160.70 lbs
11 129 Gs
|
10.93 kg / 24.11 lbs
10934 g / 107.3 N
|
65.60 kg / 144.63 lbs
~0 Gs
|
| 2 mm |
66.58 kg / 146.78 lbs
10 636 Gs
|
9.99 kg / 22.02 lbs
9987 g / 98.0 N
|
59.92 kg / 132.10 lbs
~0 Gs
|
| 3 mm |
60.60 kg / 133.60 lbs
10 147 Gs
|
9.09 kg / 20.04 lbs
9090 g / 89.2 N
|
54.54 kg / 120.24 lbs
~0 Gs
|
| 5 mm |
49.75 kg / 109.67 lbs
9 194 Gs
|
7.46 kg / 16.45 lbs
7462 g / 73.2 N
|
44.77 kg / 98.70 lbs
~0 Gs
|
| 10 mm |
29.13 kg / 64.21 lbs
7 035 Gs
|
4.37 kg / 9.63 lbs
4369 g / 42.9 N
|
26.21 kg / 57.79 lbs
~0 Gs
|
| 20 mm |
9.37 kg / 20.67 lbs
3 991 Gs
|
1.41 kg / 3.10 lbs
1406 g / 13.8 N
|
8.44 kg / 18.60 lbs
~0 Gs
|
| 50 mm |
0.54 kg / 1.19 lbs
958 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.07 lbs
~0 Gs
|
| 60 mm |
0.26 kg / 0.57 lbs
663 Gs
|
0.04 kg / 0.09 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 lbs
478 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 lbs
356 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.10 lbs
272 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.06 lbs
213 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 24x16x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 24x16x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.06 km/h
(4.74 m/s)
|
0.04 J | |
| 30 mm |
27.64 km/h
(7.68 m/s)
|
0.11 J | |
| 50 mm |
35.62 km/h
(9.89 m/s)
|
0.18 J | |
| 100 mm |
50.36 km/h
(13.99 m/s)
|
0.37 J |
Tabela 9: Parametry powłoki (trwałość)
MP 24x16x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 24x16x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 520 Mx | 235.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 24x16x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.94 kg | Standard |
| Woda (dno rzeki) |
1.08 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.04
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z użyciem płyty ze miękkiej stali, pełniącej rolę zwora magnetyczna
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne zakłóca działanie kompasów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Niszczenie danych
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Zagrożenie fizyczne
Duże magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Nie dawać dzieciom
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
