MW 22x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010047
GTIN/EAN: 5906301810469
Średnica Ø
22 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
17.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.33 kg / 91.51 N
Indukcja magnetyczna
296.78 mT / 2968 Gs
Powłoka
[NiCuNi] nikiel
6.11 ZŁ z VAT / szt. + cena za transport
4.97 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Moc oraz formę magnesów wyliczysz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 22x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010047 |
| GTIN/EAN | 5906301810469 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 17.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.33 kg / 91.51 N |
| Indukcja magnetyczna ~ ? | 296.78 mT / 2968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Poniższe dane są wynik analizy fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 22x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2967 Gs
296.7 mT
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
średnie ryzyko |
| 1 mm |
2767 Gs
276.7 mT
|
8.12 kg / 17.89 lbs
8116.0 g / 79.6 N
|
średnie ryzyko |
| 2 mm |
2538 Gs
253.8 mT
|
6.82 kg / 15.05 lbs
6824.4 g / 66.9 N
|
średnie ryzyko |
| 3 mm |
2295 Gs
229.5 mT
|
5.58 kg / 12.30 lbs
5580.8 g / 54.7 N
|
średnie ryzyko |
| 5 mm |
1818 Gs
181.8 mT
|
3.50 kg / 7.73 lbs
3504.7 g / 34.4 N
|
średnie ryzyko |
| 10 mm |
938 Gs
93.8 mT
|
0.93 kg / 2.06 lbs
933.4 g / 9.2 N
|
bezpieczny |
| 15 mm |
492 Gs
49.2 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
bezpieczny |
| 20 mm |
277 Gs
27.7 mT
|
0.08 kg / 0.18 lbs
81.6 g / 0.8 N
|
bezpieczny |
| 30 mm |
108 Gs
10.8 mT
|
0.01 kg / 0.03 lbs
12.4 g / 0.1 N
|
bezpieczny |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 22x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.36 kg / 3.01 lbs
1364.0 g / 13.4 N
|
| 3 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1116.0 g / 10.9 N
|
| 5 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
186.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 22x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.80 kg / 6.17 lbs
2799.0 g / 27.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 22x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| 1 mm |
|
2.33 kg / 5.14 lbs
2332.5 g / 22.9 N
|
| 2 mm |
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
| 3 mm |
|
7.00 kg / 15.43 lbs
6997.5 g / 68.6 N
|
| 5 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 10 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 11 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 12 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 22x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
OK |
| 40 °C | -2.2% |
9.12 kg / 20.12 lbs
9124.7 g / 89.5 N
|
OK |
| 60 °C | -4.4% |
8.92 kg / 19.66 lbs
8919.5 g / 87.5 N
|
|
| 80 °C | -6.6% |
8.71 kg / 19.21 lbs
8714.2 g / 85.5 N
|
|
| 100 °C | -28.8% |
6.64 kg / 14.65 lbs
6643.0 g / 65.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 22x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.63 kg / 45.48 lbs
4 566 Gs
|
3.09 kg / 6.82 lbs
3095 g / 30.4 N
|
N/A |
| 1 mm |
19.34 kg / 42.63 lbs
5 745 Gs
|
2.90 kg / 6.40 lbs
2901 g / 28.5 N
|
17.40 kg / 38.37 lbs
~0 Gs
|
| 2 mm |
17.95 kg / 39.57 lbs
5 535 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
16.15 kg / 35.61 lbs
~0 Gs
|
| 3 mm |
16.52 kg / 36.42 lbs
5 310 Gs
|
2.48 kg / 5.46 lbs
2478 g / 24.3 N
|
14.87 kg / 32.78 lbs
~0 Gs
|
| 5 mm |
13.69 kg / 30.18 lbs
4 834 Gs
|
2.05 kg / 4.53 lbs
2053 g / 20.1 N
|
12.32 kg / 27.16 lbs
~0 Gs
|
| 10 mm |
7.75 kg / 17.09 lbs
3 637 Gs
|
1.16 kg / 2.56 lbs
1162 g / 11.4 N
|
6.97 kg / 15.38 lbs
~0 Gs
|
| 20 mm |
2.06 kg / 4.55 lbs
1 877 Gs
|
0.31 kg / 0.68 lbs
310 g / 3.0 N
|
1.86 kg / 4.10 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
336 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
147 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
57 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 22x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 22x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.98 km/h
(6.94 m/s)
|
0.41 J | |
| 30 mm |
40.82 km/h
(11.34 m/s)
|
1.10 J | |
| 50 mm |
52.66 km/h
(14.63 m/s)
|
1.83 J | |
| 100 mm |
74.47 km/h
(20.69 m/s)
|
3.66 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 22x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 22x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 337 Mx | 123.4 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 22x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.33 kg | Standard |
| Woda (dno rzeki) |
10.68 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet bardzo mała przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Tylko dla dorosłych
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko pęknięcia
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Zagrożenie dla nawigacji
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Świadome użytkowanie
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Ochrona dłoni
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ryzyko uczulenia
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Nie wierć w magnesach
Pył generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
