MW 10x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010007
GTIN/EAN: 5906301810063
Średnica Ø
10 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.23 kg / 21.88 N
Indukcja magnetyczna
600.73 mT / 6007 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać za pomocą
formularz kontaktowy
na stronie kontakt.
Udźwig a także wygląd magnesów neodymowych sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane - MW 10x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010007 |
| GTIN/EAN | 5906301810063 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.23 kg / 21.88 N |
| Indukcja magnetyczna ~ ? | 600.73 mT / 6007 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 10x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6003 Gs
600.3 mT
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
uwaga |
| 1 mm |
4815 Gs
481.5 mT
|
1.44 kg / 3.16 lbs
1435.1 g / 14.1 N
|
bezpieczny |
| 2 mm |
3743 Gs
374.3 mT
|
0.87 kg / 1.91 lbs
867.2 g / 8.5 N
|
bezpieczny |
| 3 mm |
2869 Gs
286.9 mT
|
0.51 kg / 1.12 lbs
509.3 g / 5.0 N
|
bezpieczny |
| 5 mm |
1696 Gs
169.6 mT
|
0.18 kg / 0.39 lbs
177.9 g / 1.7 N
|
bezpieczny |
| 10 mm |
570 Gs
57.0 mT
|
0.02 kg / 0.04 lbs
20.1 g / 0.2 N
|
bezpieczny |
| 15 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
bezpieczny |
| 20 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
bezpieczny |
| 30 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MW 10x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 10x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.67 kg / 1.47 lbs
669.0 g / 6.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 10x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| 1 mm |
|
0.56 kg / 1.23 lbs
557.5 g / 5.5 N
|
| 2 mm |
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
| 3 mm |
|
1.67 kg / 3.69 lbs
1672.5 g / 16.4 N
|
| 5 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 10 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 11 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 12 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 10x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
OK |
| 40 °C | -2.2% |
2.18 kg / 4.81 lbs
2180.9 g / 21.4 N
|
OK |
| 60 °C | -4.4% |
2.13 kg / 4.70 lbs
2131.9 g / 20.9 N
|
OK |
| 80 °C | -6.6% |
2.08 kg / 4.59 lbs
2082.8 g / 20.4 N
|
|
| 100 °C | -28.8% |
1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 10x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.45 kg / 38.46 lbs
6 140 Gs
|
2.62 kg / 5.77 lbs
2617 g / 25.7 N
|
N/A |
| 1 mm |
14.15 kg / 31.20 lbs
10 813 Gs
|
2.12 kg / 4.68 lbs
2123 g / 20.8 N
|
12.74 kg / 28.08 lbs
~0 Gs
|
| 2 mm |
11.23 kg / 24.75 lbs
9 631 Gs
|
1.68 kg / 3.71 lbs
1684 g / 16.5 N
|
10.11 kg / 22.28 lbs
~0 Gs
|
| 3 mm |
8.78 kg / 19.35 lbs
8 515 Gs
|
1.32 kg / 2.90 lbs
1316 g / 12.9 N
|
7.90 kg / 17.41 lbs
~0 Gs
|
| 5 mm |
5.21 kg / 11.48 lbs
6 559 Gs
|
0.78 kg / 1.72 lbs
781 g / 7.7 N
|
4.69 kg / 10.33 lbs
~0 Gs
|
| 10 mm |
1.39 kg / 3.07 lbs
3 391 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 20 mm |
0.16 kg / 0.35 lbs
1 140 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 10x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 10x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.95 km/h
(3.88 m/s)
|
0.09 J | |
| 30 mm |
24.03 km/h
(6.68 m/s)
|
0.26 J | |
| 50 mm |
31.03 km/h
(8.62 m/s)
|
0.44 J | |
| 100 mm |
43.88 km/h
(12.19 m/s)
|
0.88 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 10x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 223 Mx | 52.2 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.23 kg | Standard |
| Woda (dno rzeki) |
2.55 kg
(+0.32 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z użyciem blachy ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o grubości przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Ochrona urządzeń
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
