MW 10x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010007
GTIN/EAN: 5906301810063
Średnica Ø
10 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.23 kg / 21.88 N
Indukcja magnetyczna
600.73 mT / 6007 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo napisz poprzez
formularz zgłoszeniowy
na naszej stronie.
Masę i wygląd magnesów skontrolujesz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 10x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010007 |
| GTIN/EAN | 5906301810063 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.23 kg / 21.88 N |
| Indukcja magnetyczna ~ ? | 600.73 mT / 6007 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią bezpośredni efekt analizy matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 10x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6003 Gs
600.3 mT
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
średnie ryzyko |
| 1 mm |
4815 Gs
481.5 mT
|
1.44 kg / 3.16 lbs
1435.1 g / 14.1 N
|
niskie ryzyko |
| 2 mm |
3743 Gs
374.3 mT
|
0.87 kg / 1.91 lbs
867.2 g / 8.5 N
|
niskie ryzyko |
| 3 mm |
2869 Gs
286.9 mT
|
0.51 kg / 1.12 lbs
509.3 g / 5.0 N
|
niskie ryzyko |
| 5 mm |
1696 Gs
169.6 mT
|
0.18 kg / 0.39 lbs
177.9 g / 1.7 N
|
niskie ryzyko |
| 10 mm |
570 Gs
57.0 mT
|
0.02 kg / 0.04 lbs
20.1 g / 0.2 N
|
niskie ryzyko |
| 15 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 10x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.67 kg / 1.47 lbs
669.0 g / 6.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 10x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| 1 mm |
|
0.56 kg / 1.23 lbs
557.5 g / 5.5 N
|
| 2 mm |
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
| 3 mm |
|
1.67 kg / 3.69 lbs
1672.5 g / 16.4 N
|
| 5 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 10 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 11 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 12 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 10x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
OK |
| 40 °C | -2.2% |
2.18 kg / 4.81 lbs
2180.9 g / 21.4 N
|
OK |
| 60 °C | -4.4% |
2.13 kg / 4.70 lbs
2131.9 g / 20.9 N
|
OK |
| 80 °C | -6.6% |
2.08 kg / 4.59 lbs
2082.8 g / 20.4 N
|
|
| 100 °C | -28.8% |
1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 10x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.45 kg / 38.46 lbs
6 140 Gs
|
2.62 kg / 5.77 lbs
2617 g / 25.7 N
|
N/A |
| 1 mm |
14.15 kg / 31.20 lbs
10 813 Gs
|
2.12 kg / 4.68 lbs
2123 g / 20.8 N
|
12.74 kg / 28.08 lbs
~0 Gs
|
| 2 mm |
11.23 kg / 24.75 lbs
9 631 Gs
|
1.68 kg / 3.71 lbs
1684 g / 16.5 N
|
10.11 kg / 22.28 lbs
~0 Gs
|
| 3 mm |
8.78 kg / 19.35 lbs
8 515 Gs
|
1.32 kg / 2.90 lbs
1316 g / 12.9 N
|
7.90 kg / 17.41 lbs
~0 Gs
|
| 5 mm |
5.21 kg / 11.48 lbs
6 559 Gs
|
0.78 kg / 1.72 lbs
781 g / 7.7 N
|
4.69 kg / 10.33 lbs
~0 Gs
|
| 10 mm |
1.39 kg / 3.07 lbs
3 391 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 20 mm |
0.16 kg / 0.35 lbs
1 140 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 10x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 10x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.95 km/h
(3.88 m/s)
|
0.09 J | |
| 30 mm |
24.03 km/h
(6.68 m/s)
|
0.26 J | |
| 50 mm |
31.03 km/h
(8.62 m/s)
|
0.44 J | |
| 100 mm |
43.88 km/h
(12.19 m/s)
|
0.88 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 10x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 223 Mx | 52.2 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 10x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.23 kg | Standard |
| Woda (dno rzeki) |
2.55 kg
(+0.32 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Niszczenie danych
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
To nie jest zabawka
Te produkty magnetyczne to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
