MW 10x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010007
GTIN/EAN: 5906301810063
Średnica Ø
10 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.23 kg / 21.88 N
Indukcja magnetyczna
600.73 mT / 6007 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz przez
formularz zapytania
w sekcji kontakt.
Parametry i kształt magnesów neodymowych przetestujesz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MW 10x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010007 |
| GTIN/EAN | 5906301810063 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.23 kg / 21.88 N |
| Indukcja magnetyczna ~ ? | 600.73 mT / 6007 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane są wynik kalkulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 10x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6003 Gs
600.3 mT
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
mocny |
| 1 mm |
4815 Gs
481.5 mT
|
1.44 kg / 3.16 lbs
1435.1 g / 14.1 N
|
słaby uchwyt |
| 2 mm |
3743 Gs
374.3 mT
|
0.87 kg / 1.91 lbs
867.2 g / 8.5 N
|
słaby uchwyt |
| 3 mm |
2869 Gs
286.9 mT
|
0.51 kg / 1.12 lbs
509.3 g / 5.0 N
|
słaby uchwyt |
| 5 mm |
1696 Gs
169.6 mT
|
0.18 kg / 0.39 lbs
177.9 g / 1.7 N
|
słaby uchwyt |
| 10 mm |
570 Gs
57.0 mT
|
0.02 kg / 0.04 lbs
20.1 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 10x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 10x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.67 kg / 1.47 lbs
669.0 g / 6.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.45 kg / 0.98 lbs
446.0 g / 4.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 10x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.49 lbs
223.0 g / 2.2 N
|
| 1 mm |
|
0.56 kg / 1.23 lbs
557.5 g / 5.5 N
|
| 2 mm |
|
1.12 kg / 2.46 lbs
1115.0 g / 10.9 N
|
| 3 mm |
|
1.67 kg / 3.69 lbs
1672.5 g / 16.4 N
|
| 5 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 10 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 11 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
| 12 mm |
|
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 10x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.23 kg / 4.92 lbs
2230.0 g / 21.9 N
|
OK |
| 40 °C | -2.2% |
2.18 kg / 4.81 lbs
2180.9 g / 21.4 N
|
OK |
| 60 °C | -4.4% |
2.13 kg / 4.70 lbs
2131.9 g / 20.9 N
|
OK |
| 80 °C | -6.6% |
2.08 kg / 4.59 lbs
2082.8 g / 20.4 N
|
|
| 100 °C | -28.8% |
1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.45 kg / 38.46 lbs
6 140 Gs
|
2.62 kg / 5.77 lbs
2617 g / 25.7 N
|
N/A |
| 1 mm |
14.15 kg / 31.20 lbs
10 813 Gs
|
2.12 kg / 4.68 lbs
2123 g / 20.8 N
|
12.74 kg / 28.08 lbs
~0 Gs
|
| 2 mm |
11.23 kg / 24.75 lbs
9 631 Gs
|
1.68 kg / 3.71 lbs
1684 g / 16.5 N
|
10.11 kg / 22.28 lbs
~0 Gs
|
| 3 mm |
8.78 kg / 19.35 lbs
8 515 Gs
|
1.32 kg / 2.90 lbs
1316 g / 12.9 N
|
7.90 kg / 17.41 lbs
~0 Gs
|
| 5 mm |
5.21 kg / 11.48 lbs
6 559 Gs
|
0.78 kg / 1.72 lbs
781 g / 7.7 N
|
4.69 kg / 10.33 lbs
~0 Gs
|
| 10 mm |
1.39 kg / 3.07 lbs
3 391 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 20 mm |
0.16 kg / 0.35 lbs
1 140 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
165 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 10x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 10x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.95 km/h
(3.88 m/s)
|
0.09 J | |
| 30 mm |
24.03 km/h
(6.68 m/s)
|
0.26 J | |
| 50 mm |
31.03 km/h
(8.62 m/s)
|
0.44 J | |
| 100 mm |
43.88 km/h
(12.19 m/s)
|
0.88 J |
Tabela 9: Parametry powłoki (trwałość)
MW 10x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 10x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 223 Mx | 52.2 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 10x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.23 kg | Standard |
| Woda (dno rzeki) |
2.55 kg
(+0.32 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Nadwrażliwość na metale
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Zalecamy używanie rękawic bezlateksowych.
Maksymalna temperatura
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Pole magnetyczne a elektronika
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
