MW 10x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010007
GTIN/EAN: 5906301810063
Średnica Ø
10 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.23 kg / 21.88 N
Indukcja magnetyczna
600.73 mT / 6007 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie daj znać za pomocą
formularz kontaktowy
na stronie kontaktowej.
Udźwig i budowę magnesów neodymowych skontrolujesz u nas w
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 10x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010007 |
| GTIN/EAN | 5906301810063 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.23 kg / 21.88 N |
| Indukcja magnetyczna ~ ? | 600.73 mT / 6007 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze wartości są rezultat kalkulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 10x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6003 Gs
600.3 mT
|
2.23 kg / 2230.0 g
21.9 N
|
średnie ryzyko |
| 1 mm |
4815 Gs
481.5 mT
|
1.44 kg / 1435.1 g
14.1 N
|
bezpieczny |
| 2 mm |
3743 Gs
374.3 mT
|
0.87 kg / 867.2 g
8.5 N
|
bezpieczny |
| 3 mm |
2869 Gs
286.9 mT
|
0.51 kg / 509.3 g
5.0 N
|
bezpieczny |
| 5 mm |
1696 Gs
169.6 mT
|
0.18 kg / 177.9 g
1.7 N
|
bezpieczny |
| 10 mm |
570 Gs
57.0 mT
|
0.02 kg / 20.1 g
0.2 N
|
bezpieczny |
| 15 mm |
256 Gs
25.6 mT
|
0.00 kg / 4.1 g
0.0 N
|
bezpieczny |
| 20 mm |
137 Gs
13.7 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
| 30 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 10x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.45 kg / 446.0 g
4.4 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 288.0 g
2.8 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 174.0 g
1.7 N
|
| 3 mm | Stal (~0.2) |
0.10 kg / 102.0 g
1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 10x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.67 kg / 669.0 g
6.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.45 kg / 446.0 g
4.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 223.0 g
2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.12 kg / 1115.0 g
10.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 10x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 223.0 g
2.2 N
|
| 1 mm |
|
0.56 kg / 557.5 g
5.5 N
|
| 2 mm |
|
1.12 kg / 1115.0 g
10.9 N
|
| 5 mm |
|
2.23 kg / 2230.0 g
21.9 N
|
| 10 mm |
|
2.23 kg / 2230.0 g
21.9 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 10x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.23 kg / 2230.0 g
21.9 N
|
OK |
| 40 °C | -2.2% |
2.18 kg / 2180.9 g
21.4 N
|
OK |
| 60 °C | -4.4% |
2.13 kg / 2131.9 g
20.9 N
|
OK |
| 80 °C | -6.6% |
2.08 kg / 2082.8 g
20.4 N
|
|
| 100 °C | -28.8% |
1.59 kg / 1587.8 g
15.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 10x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.45 kg / 17447 g
171.2 N
6 140 Gs
|
N/A |
| 1 mm |
14.15 kg / 14153 g
138.8 N
10 813 Gs
|
12.74 kg / 12738 g
125.0 N
~0 Gs
|
| 2 mm |
11.23 kg / 11228 g
110.1 N
9 631 Gs
|
10.11 kg / 10105 g
99.1 N
~0 Gs
|
| 3 mm |
8.78 kg / 8776 g
86.1 N
8 515 Gs
|
7.90 kg / 7898 g
77.5 N
~0 Gs
|
| 5 mm |
5.21 kg / 5208 g
51.1 N
6 559 Gs
|
4.69 kg / 4687 g
46.0 N
~0 Gs
|
| 10 mm |
1.39 kg / 1392 g
13.7 N
3 391 Gs
|
1.25 kg / 1253 g
12.3 N
~0 Gs
|
| 20 mm |
0.16 kg / 157 g
1.5 N
1 140 Gs
|
0.14 kg / 142 g
1.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
165 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 10x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 10x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.95 km/h
(3.88 m/s)
|
0.09 J | |
| 30 mm |
24.03 km/h
(6.68 m/s)
|
0.26 J | |
| 50 mm |
31.03 km/h
(8.62 m/s)
|
0.44 J | |
| 100 mm |
43.88 km/h
(12.19 m/s)
|
0.88 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 10x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 10x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 223 Mx | 52.2 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 10x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.23 kg | Standard |
| Woda (dno rzeki) |
2.55 kg
(+0.32 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Reakcje alergiczne
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Uwaga medyczna
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę implantu.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko połknięcia
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Ogromna siła
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
