MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030204
GTIN/EAN: 5906301812210
Średnica
60 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.41 kg / 92.27 N
Indukcja magnetyczna
101.92 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
47.99 ZŁ z VAT / szt. + cena za transport
39.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie daj znać za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Parametry a także budowę elementów magnetycznych przetestujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030204 |
| GTIN/EAN | 5906301812210 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 60 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.41 kg / 92.27 N |
| Indukcja magnetyczna ~ ? | 101.92 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Poniższe dane stanowią rezultat symulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MP 60x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4541 Gs
454.1 mT
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
średnie ryzyko |
| 1 mm |
4400 Gs
440.0 mT
|
8.83 kg / 19.47 lbs
8832.4 g / 86.6 N
|
średnie ryzyko |
| 2 mm |
4254 Gs
425.4 mT
|
8.26 kg / 18.21 lbs
8258.2 g / 81.0 N
|
średnie ryzyko |
| 3 mm |
4107 Gs
410.7 mT
|
7.70 kg / 16.97 lbs
7697.5 g / 75.5 N
|
średnie ryzyko |
| 5 mm |
3812 Gs
381.2 mT
|
6.63 kg / 14.62 lbs
6630.0 g / 65.0 N
|
średnie ryzyko |
| 10 mm |
3097 Gs
309.7 mT
|
4.38 kg / 9.65 lbs
4375.1 g / 42.9 N
|
średnie ryzyko |
| 15 mm |
2463 Gs
246.3 mT
|
2.77 kg / 6.10 lbs
2767.8 g / 27.2 N
|
średnie ryzyko |
| 20 mm |
1939 Gs
193.9 mT
|
1.72 kg / 3.78 lbs
1715.2 g / 16.8 N
|
bezpieczny |
| 30 mm |
1202 Gs
120.2 mT
|
0.66 kg / 1.45 lbs
659.2 g / 6.5 N
|
bezpieczny |
| 50 mm |
509 Gs
50.9 mT
|
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 60x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 2 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.33 kg / 2.92 lbs
1326.0 g / 13.0 N
|
| 10 mm | Stal (~0.2) |
0.88 kg / 1.93 lbs
876.0 g / 8.6 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
554.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 30 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 60x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.82 kg / 6.22 lbs
2823.0 g / 27.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 60x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| 1 mm |
|
2.35 kg / 5.19 lbs
2352.5 g / 23.1 N
|
| 2 mm |
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
| 3 mm |
|
7.06 kg / 15.56 lbs
7057.5 g / 69.2 N
|
| 5 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 10 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 11 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 12 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 60x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
OK |
| 40 °C | -2.2% |
9.20 kg / 20.29 lbs
9203.0 g / 90.3 N
|
OK |
| 60 °C | -4.4% |
9.00 kg / 19.83 lbs
8996.0 g / 88.3 N
|
OK |
| 80 °C | -6.6% |
8.79 kg / 19.38 lbs
8788.9 g / 86.2 N
|
|
| 100 °C | -28.8% |
6.70 kg / 14.77 lbs
6699.9 g / 65.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 60x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
303.46 kg / 669.01 lbs
5 621 Gs
|
45.52 kg / 100.35 lbs
45519 g / 446.5 N
|
N/A |
| 1 mm |
294.21 kg / 648.62 lbs
8 943 Gs
|
44.13 kg / 97.29 lbs
44132 g / 432.9 N
|
264.79 kg / 583.76 lbs
~0 Gs
|
| 2 mm |
284.83 kg / 627.94 lbs
8 800 Gs
|
42.72 kg / 94.19 lbs
42725 g / 419.1 N
|
256.35 kg / 565.15 lbs
~0 Gs
|
| 3 mm |
275.53 kg / 607.43 lbs
8 655 Gs
|
41.33 kg / 91.11 lbs
41329 g / 405.4 N
|
247.97 kg / 546.69 lbs
~0 Gs
|
| 5 mm |
257.21 kg / 567.06 lbs
8 362 Gs
|
38.58 kg / 85.06 lbs
38582 g / 378.5 N
|
231.49 kg / 510.35 lbs
~0 Gs
|
| 10 mm |
213.81 kg / 471.36 lbs
7 624 Gs
|
32.07 kg / 70.70 lbs
32071 g / 314.6 N
|
192.43 kg / 424.23 lbs
~0 Gs
|
| 20 mm |
141.09 kg / 311.05 lbs
6 193 Gs
|
21.16 kg / 46.66 lbs
21164 g / 207.6 N
|
126.98 kg / 279.95 lbs
~0 Gs
|
| 50 mm |
34.15 kg / 75.30 lbs
3 047 Gs
|
5.12 kg / 11.29 lbs
5123 g / 50.3 N
|
30.74 kg / 67.77 lbs
~0 Gs
|
| 60 mm |
21.26 kg / 46.87 lbs
2 404 Gs
|
3.19 kg / 7.03 lbs
3189 g / 31.3 N
|
19.13 kg / 42.18 lbs
~0 Gs
|
| 70 mm |
13.43 kg / 29.61 lbs
1 911 Gs
|
2.01 kg / 4.44 lbs
2015 g / 19.8 N
|
12.09 kg / 26.65 lbs
~0 Gs
|
| 80 mm |
8.65 kg / 19.06 lbs
1 533 Gs
|
1.30 kg / 2.86 lbs
1297 g / 12.7 N
|
7.78 kg / 17.16 lbs
~0 Gs
|
| 90 mm |
5.68 kg / 12.52 lbs
1 243 Gs
|
0.85 kg / 1.88 lbs
852 g / 8.4 N
|
5.11 kg / 11.27 lbs
~0 Gs
|
| 100 mm |
3.81 kg / 8.39 lbs
1 017 Gs
|
0.57 kg / 1.26 lbs
571 g / 5.6 N
|
3.43 kg / 7.55 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 60x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 60x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.67 km/h
(3.52 m/s)
|
0.58 J | |
| 30 mm |
18.20 km/h
(5.06 m/s)
|
1.20 J | |
| 50 mm |
22.71 km/h
(6.31 m/s)
|
1.88 J | |
| 100 mm |
31.88 km/h
(8.85 m/s)
|
3.70 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 60x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 60x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 109 640 Mx | 1096.4 µWb |
| Współczynnik Pc | 0.62 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 60x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.41 kg | Standard |
| Woda (dno rzeki) |
10.77 kg
(+1.36 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.62
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Czynniki determinujące udźwig w warunkach realnych
- Dystans – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko zmiażdżenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Uczulenie na powłokę
Niektóre osoby ma nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Zalecamy używanie rękawiczek ochronnych.
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Zakaz zabawy
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
