MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030205
GTIN/EAN: 5906301812227
Średnica
62 mm [±0,1 mm]
Średnica wewnętrzna Ø
42 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
306.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
58.67 kg / 575.60 N
Indukcja magnetyczna
389.14 mT / 3891 Gs
Powłoka
[NiCuNi] nikiel
165.00 ZŁ z VAT / szt. + cena za transport
134.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz kłopot z wyborem?
Dzwoń do nas
+48 888 99 98 98
ewentualnie pisz przez
formularz zapytania
na stronie kontakt.
Właściwości oraz wygląd magnesów neodymowych obliczysz w naszym
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030205 |
| GTIN/EAN | 5906301812227 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 62 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 42 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 306.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 58.67 kg / 575.60 N |
| Indukcja magnetyczna ~ ? | 389.14 mT / 3891 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Niniejsze informacje stanowią wynik analizy fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
MP 62x42x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4472 Gs
447.2 mT
|
58.67 kg / 58670.0 g
575.6 N
|
niebezpieczny! |
| 1 mm |
4338 Gs
433.8 mT
|
55.21 kg / 55213.2 g
541.6 N
|
niebezpieczny! |
| 2 mm |
4201 Gs
420.1 mT
|
51.77 kg / 51768.5 g
507.8 N
|
niebezpieczny! |
| 3 mm |
4061 Gs
406.1 mT
|
48.39 kg / 48394.9 g
474.8 N
|
niebezpieczny! |
| 5 mm |
3781 Gs
378.1 mT
|
41.94 kg / 41942.4 g
411.5 N
|
niebezpieczny! |
| 10 mm |
3097 Gs
309.7 mT
|
28.15 kg / 28148.0 g
276.1 N
|
niebezpieczny! |
| 15 mm |
2485 Gs
248.5 mT
|
18.12 kg / 18118.5 g
177.7 N
|
niebezpieczny! |
| 20 mm |
1972 Gs
197.2 mT
|
11.41 kg / 11412.7 g
112.0 N
|
niebezpieczny! |
| 30 mm |
1239 Gs
123.9 mT
|
4.51 kg / 4505.2 g
44.2 N
|
średnie ryzyko |
| 50 mm |
533 Gs
53.3 mT
|
0.83 kg / 832.4 g
8.2 N
|
bezpieczny |
MP 62x42x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
11.73 kg / 11734.0 g
115.1 N
|
| 1 mm | Stal (~0.2) |
11.04 kg / 11042.0 g
108.3 N
|
| 2 mm | Stal (~0.2) |
10.35 kg / 10354.0 g
101.6 N
|
| 3 mm | Stal (~0.2) |
9.68 kg / 9678.0 g
94.9 N
|
| 5 mm | Stal (~0.2) |
8.39 kg / 8388.0 g
82.3 N
|
| 10 mm | Stal (~0.2) |
5.63 kg / 5630.0 g
55.2 N
|
| 15 mm | Stal (~0.2) |
3.62 kg / 3624.0 g
35.6 N
|
| 20 mm | Stal (~0.2) |
2.28 kg / 2282.0 g
22.4 N
|
| 30 mm | Stal (~0.2) |
0.90 kg / 902.0 g
8.8 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 166.0 g
1.6 N
|
MP 62x42x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
17.60 kg / 17601.0 g
172.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
11.73 kg / 11734.0 g
115.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.87 kg / 5867.0 g
57.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
29.34 kg / 29335.0 g
287.8 N
|
MP 62x42x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.96 kg / 1955.7 g
19.2 N
|
| 1 mm |
|
4.89 kg / 4889.2 g
48.0 N
|
| 2 mm |
|
9.78 kg / 9778.3 g
95.9 N
|
| 5 mm |
|
24.45 kg / 24445.8 g
239.8 N
|
| 10 mm |
|
48.89 kg / 48891.7 g
479.6 N
|
MP 62x42x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
58.67 kg / 58670.0 g
575.6 N
|
OK |
| 40 °C | -2.2% |
57.38 kg / 57379.3 g
562.9 N
|
OK |
| 60 °C | -4.4% |
56.09 kg / 56088.5 g
550.2 N
|
OK |
| 80 °C | -6.6% |
54.80 kg / 54797.8 g
537.6 N
|
|
| 100 °C | -28.8% |
41.77 kg / 41773.0 g
409.8 N
|
MP 62x42x25 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
264.93 kg / 264931 g
2599.0 N
5 588 Gs
|
N/A |
| 1 mm |
257.19 kg / 257186 g
2523.0 N
8 812 Gs
|
231.47 kg / 231468 g
2270.7 N
~0 Gs
|
| 2 mm |
249.32 kg / 249322 g
2445.8 N
8 676 Gs
|
224.39 kg / 224389 g
2201.3 N
~0 Gs
|
| 3 mm |
241.51 kg / 241510 g
2369.2 N
8 539 Gs
|
217.36 kg / 217359 g
2132.3 N
~0 Gs
|
| 5 mm |
226.10 kg / 226103 g
2218.1 N
8 262 Gs
|
203.49 kg / 203493 g
1996.3 N
~0 Gs
|
| 10 mm |
189.40 kg / 189396 g
1858.0 N
7 562 Gs
|
170.46 kg / 170456 g
1672.2 N
~0 Gs
|
| 20 mm |
127.11 kg / 127106 g
1246.9 N
6 195 Gs
|
114.40 kg / 114395 g
1122.2 N
~0 Gs
|
| 50 mm |
32.28 kg / 32284 g
316.7 N
3 122 Gs
|
29.06 kg / 29056 g
285.0 N
~0 Gs
|
MP 62x42x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 32.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 25.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 20.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 15.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
MP 62x42x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.65 km/h
(4.90 m/s)
|
3.68 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
7.57 J | |
| 50 mm |
31.49 km/h
(8.75 m/s)
|
11.72 J | |
| 100 mm |
44.16 km/h
(12.27 m/s)
|
23.04 J |
MP 62x42x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 62x42x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 100 906 Mx | 1009.1 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
MP 62x42x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 58.67 kg | Standard |
| Woda (dno rzeki) |
67.18 kg
(+8.51 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- z wykorzystaniem blachy ze miękkiej stali, która służy jako zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Uczulenie na powłokę
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Przegrzanie magnesu
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Ostrożność wymagana
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Elektronika precyzyjna
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Zakaz zabawy
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
