MW 8x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010475
GTIN/EAN: 5906301811138
Średnica Ø
8 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
7.54 g
Kierunek magnesowania
→ diametralny
Udźwig
1.30 kg / 12.71 N
Indukcja magnetyczna
607.01 mT / 6070 Gs
Powłoka
[NiCuNi] nikiel
4.60 ZŁ z VAT / szt. + cena za transport
3.74 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo pisz korzystając z
formularz
na stronie kontakt.
Właściwości oraz formę magnesu neodymowego sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry - MW 8x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010475 |
| GTIN/EAN | 5906301811138 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 7.54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 1.30 kg / 12.71 N |
| Indukcja magnetyczna ~ ? | 607.01 mT / 6070 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Przedstawione informacje stanowią wynik symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 8x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6064 Gs
606.4 mT
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
słaby uchwyt |
| 1 mm |
4587 Gs
458.7 mT
|
0.74 kg / 1.64 lbs
743.7 g / 7.3 N
|
słaby uchwyt |
| 2 mm |
3327 Gs
332.7 mT
|
0.39 kg / 0.86 lbs
391.4 g / 3.8 N
|
słaby uchwyt |
| 3 mm |
2388 Gs
238.8 mT
|
0.20 kg / 0.44 lbs
201.6 g / 2.0 N
|
słaby uchwyt |
| 5 mm |
1281 Gs
128.1 mT
|
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
słaby uchwyt |
| 10 mm |
389 Gs
38.9 mT
|
0.01 kg / 0.01 lbs
5.4 g / 0.1 N
|
słaby uchwyt |
| 15 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 8x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 8x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.39 kg / 0.86 lbs
390.0 g / 3.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 8x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.13 kg / 0.29 lbs
130.0 g / 1.3 N
|
| 1 mm |
|
0.33 kg / 0.72 lbs
325.0 g / 3.2 N
|
| 2 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 3 mm |
|
0.98 kg / 2.15 lbs
975.0 g / 9.6 N
|
| 5 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 10 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 11 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 12 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 8x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
OK |
| 40 °C | -2.2% |
1.27 kg / 2.80 lbs
1271.4 g / 12.5 N
|
OK |
| 60 °C | -4.4% |
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
OK |
| 80 °C | -6.6% |
1.21 kg / 2.68 lbs
1214.2 g / 11.9 N
|
|
| 100 °C | -28.8% |
0.93 kg / 2.04 lbs
925.6 g / 9.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 8x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
11.40 kg / 25.12 lbs
6 154 Gs
|
1.71 kg / 3.77 lbs
1709 g / 16.8 N
|
N/A |
| 1 mm |
8.76 kg / 19.31 lbs
10 632 Gs
|
1.31 kg / 2.90 lbs
1314 g / 12.9 N
|
7.88 kg / 17.38 lbs
~0 Gs
|
| 2 mm |
6.52 kg / 14.37 lbs
9 174 Gs
|
0.98 kg / 2.16 lbs
978 g / 9.6 N
|
5.87 kg / 12.94 lbs
~0 Gs
|
| 3 mm |
4.76 kg / 10.49 lbs
7 837 Gs
|
0.71 kg / 1.57 lbs
714 g / 7.0 N
|
4.28 kg / 9.44 lbs
~0 Gs
|
| 5 mm |
2.46 kg / 5.43 lbs
5 637 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.22 kg / 4.88 lbs
~0 Gs
|
| 10 mm |
0.51 kg / 1.12 lbs
2 561 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.10 lbs
778 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
107 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 8x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 8x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
13.28 km/h
(3.69 m/s)
|
0.05 J | |
| 30 mm |
22.94 km/h
(6.37 m/s)
|
0.15 J | |
| 50 mm |
29.61 km/h
(8.23 m/s)
|
0.26 J | |
| 100 mm |
41.88 km/h
(11.63 m/s)
|
0.51 J |
Tabela 9: Parametry powłoki (trwałość)
MW 8x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 8x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 457 Mx | 34.6 µWb |
| Współczynnik Pc | 1.31 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.30 kg | Standard |
| Woda (dno rzeki) |
1.49 kg
(+0.19 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną idealnie równą
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (pomiędzy magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zagrożenie zapłonem
Pył generowany podczas szlifowania magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Uwaga na odpryski
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Reakcje alergiczne
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
