MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030248
GTIN: 5906301812241
Średnica
36.2 mm [±0,1 mm]
Średnica wewnętrzna Ø
11/6 mm [±0,1 mm]
Wysokość
7.5 mm [±0,1 mm]
Waga
56.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
17.12 kg / 167.95 N
Indukcja magnetyczna
237.29 mT / 2373 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Dzwoń do nas
+48 888 99 98 98
alternatywnie daj znać korzystając z
formularz
na stronie kontakt.
Moc i budowę magnesów zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030248 |
| GTIN | 5906301812241 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 36.2 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 11/6 mm [±0,1 mm] |
| Wysokość | 7.5 mm [±0,1 mm] |
| Waga | 56.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 17.12 kg / 167.95 N |
| Indukcja magnetyczna ~ ? | 237.29 mT / 2373 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - parametry techniczne
Niniejsze dane stanowią rezultat symulacji fizycznej. Wyniki bazują na algorytmach dla materiału NdFeB. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2059 Gs
205.9 mT
|
17.12 kg / 17120.0 g
167.9 N
|
krytyczny poziom |
| 1 mm |
1997 Gs
199.7 mT
|
16.11 kg / 16110.1 g
158.0 N
|
krytyczny poziom |
| 2 mm |
1923 Gs
192.3 mT
|
14.93 kg / 14925.7 g
146.4 N
|
krytyczny poziom |
| 3 mm |
1838 Gs
183.8 mT
|
13.64 kg / 13636.4 g
133.8 N
|
krytyczny poziom |
| 5 mm |
1648 Gs
164.8 mT
|
10.97 kg / 10968.0 g
107.6 N
|
krytyczny poziom |
| 10 mm |
1161 Gs
116.1 mT
|
5.44 kg / 5444.8 g
53.4 N
|
średnie ryzyko |
| 15 mm |
775 Gs
77.5 mT
|
2.43 kg / 2427.5 g
23.8 N
|
średnie ryzyko |
| 20 mm |
515 Gs
51.5 mT
|
1.07 kg / 1071.1 g
10.5 N
|
niskie ryzyko |
| 30 mm |
242 Gs
24.2 mT
|
0.24 kg / 236.8 g
2.3 N
|
niskie ryzyko |
| 50 mm |
73 Gs
7.3 mT
|
0.02 kg / 21.8 g
0.2 N
|
niskie ryzyko |
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.42 kg / 3424.0 g
33.6 N
|
| 1 mm | Stal (~0.2) |
3.22 kg / 3222.0 g
31.6 N
|
| 2 mm | Stal (~0.2) |
2.99 kg / 2986.0 g
29.3 N
|
| 3 mm | Stal (~0.2) |
2.73 kg / 2728.0 g
26.8 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 2194.0 g
21.5 N
|
| 10 mm | Stal (~0.2) |
1.09 kg / 1088.0 g
10.7 N
|
| 15 mm | Stal (~0.2) |
0.49 kg / 486.0 g
4.8 N
|
| 20 mm | Stal (~0.2) |
0.21 kg / 214.0 g
2.1 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
MP 36.2x11/6x7.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.14 kg / 5136.0 g
50.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.42 kg / 3424.0 g
33.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.71 kg / 1712.0 g
16.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.56 kg / 8560.0 g
84.0 N
|
MP 36.2x11/6x7.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.86 kg / 856.0 g
8.4 N
|
| 1 mm |
|
2.14 kg / 2140.0 g
21.0 N
|
| 2 mm |
|
4.28 kg / 4280.0 g
42.0 N
|
| 5 mm |
|
10.70 kg / 10700.0 g
105.0 N
|
| 10 mm |
|
17.12 kg / 17120.0 g
167.9 N
|
MP 36.2x11/6x7.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
17.12 kg / 17120.0 g
167.9 N
|
OK |
| 40 °C | -2.2% |
16.74 kg / 16743.4 g
164.3 N
|
OK |
| 60 °C | -4.4% |
16.37 kg / 16366.7 g
160.6 N
|
|
| 80 °C | -6.6% |
15.99 kg / 15990.1 g
156.9 N
|
|
| 100 °C | -28.8% |
12.19 kg / 12189.4 g
119.6 N
|
MP 36.2x11/6x7.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
22.24 kg / 22240 g
218.2 N
3 569 Gs
|
N/A |
| 1 mm |
21.62 kg / 21621 g
212.1 N
4 061 Gs
|
19.46 kg / 19459 g
190.9 N
~0 Gs
|
| 2 mm |
20.93 kg / 20928 g
205.3 N
3 995 Gs
|
18.84 kg / 18835 g
184.8 N
~0 Gs
|
| 3 mm |
20.18 kg / 20180 g
198.0 N
3 923 Gs
|
18.16 kg / 18162 g
178.2 N
~0 Gs
|
| 5 mm |
18.56 kg / 18564 g
182.1 N
3 763 Gs
|
16.71 kg / 16708 g
163.9 N
~0 Gs
|
| 10 mm |
14.25 kg / 14248 g
139.8 N
3 296 Gs
|
12.82 kg / 12823 g
125.8 N
~0 Gs
|
| 20 mm |
7.07 kg / 7073 g
69.4 N
2 322 Gs
|
6.37 kg / 6366 g
62.4 N
~0 Gs
|
| 50 mm |
0.64 kg / 637 g
6.2 N
697 Gs
|
0.57 kg / 573 g
5.6 N
~0 Gs
|
MP 36.2x11/6x7.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MP 36.2x11/6x7.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.79 km/h
(5.78 m/s)
|
0.94 J | |
| 30 mm |
30.72 km/h
(8.53 m/s)
|
2.05 J | |
| 50 mm |
39.36 km/h
(10.93 m/s)
|
3.36 J | |
| 100 mm |
55.61 km/h
(15.45 m/s)
|
6.72 J |
MP 36.2x11/6x7.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 36.2x11/6x7.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 038 Mx | 210.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
MP 36.2x11/6x7.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 17.12 kg | Standard |
| Woda (dno rzeki) |
19.60 kg
(+2.48 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady neodymowych magnesów NdFeB.
Oprócz potężną siłą, magnesy typu NdFeB wnoszą wiele innych atutów::
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Maksymalna siła przyciągania magnesu – co się na to składa?
Siła oderwania to rezultat pomiaru dla warunków idealnego styku, zakładającej:
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
Na skuteczność trzymania mają wpływ konkretne warunki, takie jak (od najważniejszych):
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
* Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie dawać dzieciom
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Wpływ na smartfony
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Urządzenia elektroniczne
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Ogromna siła
Stosuj magnesy świadomie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Ostrzeżenie!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
