MW 40x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010067
GTIN/EAN: 5906301810667
Średnica Ø
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
141.37 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.64 kg / 418.33 N
Indukcja magnetyczna
371.91 mT / 3719 Gs
Powłoka
[NiCuNi] nikiel
65.93 ZŁ z VAT / szt. + cena za transport
53.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie napisz za pomocą
formularz zapytania
na stronie kontaktowej.
Parametry a także wygląd magnesów zweryfikujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 40x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010067 |
| GTIN/EAN | 5906301810667 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 141.37 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.64 kg / 418.33 N |
| Indukcja magnetyczna ~ ? | 371.91 mT / 3719 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze dane stanowią bezpośredni efekt analizy fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3718 Gs
371.8 mT
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
niebezpieczny! |
| 1 mm |
3563 Gs
356.3 mT
|
39.16 kg / 86.33 lbs
39159.5 g / 384.2 N
|
niebezpieczny! |
| 2 mm |
3398 Gs
339.8 mT
|
35.62 kg / 78.52 lbs
35617.1 g / 349.4 N
|
niebezpieczny! |
| 3 mm |
3228 Gs
322.8 mT
|
32.13 kg / 70.84 lbs
32130.5 g / 315.2 N
|
niebezpieczny! |
| 5 mm |
2880 Gs
288.0 mT
|
25.58 kg / 56.40 lbs
25584.2 g / 251.0 N
|
niebezpieczny! |
| 10 mm |
2069 Gs
206.9 mT
|
13.20 kg / 29.09 lbs
13196.7 g / 129.5 N
|
niebezpieczny! |
| 15 mm |
1439 Gs
143.9 mT
|
6.38 kg / 14.07 lbs
6383.1 g / 62.6 N
|
uwaga |
| 20 mm |
999 Gs
99.9 mT
|
3.08 kg / 6.79 lbs
3077.9 g / 30.2 N
|
uwaga |
| 30 mm |
507 Gs
50.7 mT
|
0.79 kg / 1.75 lbs
792.4 g / 7.8 N
|
bezpieczny |
| 50 mm |
169 Gs
16.9 mT
|
0.09 kg / 0.19 lbs
88.4 g / 0.9 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
|
| 1 mm | Stal (~0.2) |
7.83 kg / 17.27 lbs
7832.0 g / 76.8 N
|
| 2 mm | Stal (~0.2) |
7.12 kg / 15.71 lbs
7124.0 g / 69.9 N
|
| 3 mm | Stal (~0.2) |
6.43 kg / 14.17 lbs
6426.0 g / 63.0 N
|
| 5 mm | Stal (~0.2) |
5.12 kg / 11.28 lbs
5116.0 g / 50.2 N
|
| 10 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2640.0 g / 25.9 N
|
| 15 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 20 mm | Stal (~0.2) |
0.62 kg / 1.36 lbs
616.0 g / 6.0 N
|
| 30 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.79 kg / 28.20 lbs
12792.0 g / 125.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.26 kg / 9.40 lbs
4264.0 g / 41.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.32 kg / 47.00 lbs
21320.0 g / 209.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.13 kg / 4.70 lbs
2132.0 g / 20.9 N
|
| 1 mm |
|
5.33 kg / 11.75 lbs
5330.0 g / 52.3 N
|
| 2 mm |
|
10.66 kg / 23.50 lbs
10660.0 g / 104.6 N
|
| 3 mm |
|
15.99 kg / 35.25 lbs
15990.0 g / 156.9 N
|
| 5 mm |
|
26.65 kg / 58.75 lbs
26650.0 g / 261.4 N
|
| 10 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
| 11 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
| 12 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
OK |
| 40 °C | -2.2% |
41.70 kg / 91.94 lbs
41701.9 g / 409.1 N
|
OK |
| 60 °C | -4.4% |
40.76 kg / 89.87 lbs
40763.8 g / 399.9 N
|
|
| 80 °C | -6.6% |
39.83 kg / 87.80 lbs
39825.8 g / 390.7 N
|
|
| 100 °C | -28.8% |
30.36 kg / 66.93 lbs
30359.7 g / 297.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 40x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
107.12 kg / 236.16 lbs
5 156 Gs
|
16.07 kg / 35.42 lbs
16068 g / 157.6 N
|
N/A |
| 1 mm |
102.82 kg / 226.67 lbs
7 286 Gs
|
15.42 kg / 34.00 lbs
15422 g / 151.3 N
|
92.53 kg / 204.00 lbs
~0 Gs
|
| 2 mm |
98.38 kg / 216.89 lbs
7 127 Gs
|
14.76 kg / 32.53 lbs
14757 g / 144.8 N
|
88.54 kg / 195.20 lbs
~0 Gs
|
| 3 mm |
93.92 kg / 207.06 lbs
6 964 Gs
|
14.09 kg / 31.06 lbs
14088 g / 138.2 N
|
84.53 kg / 186.36 lbs
~0 Gs
|
| 5 mm |
85.07 kg / 187.55 lbs
6 627 Gs
|
12.76 kg / 28.13 lbs
12760 g / 125.2 N
|
76.56 kg / 168.79 lbs
~0 Gs
|
| 10 mm |
64.27 kg / 141.70 lbs
5 761 Gs
|
9.64 kg / 21.25 lbs
9641 g / 94.6 N
|
57.85 kg / 127.53 lbs
~0 Gs
|
| 20 mm |
33.15 kg / 73.09 lbs
4 137 Gs
|
4.97 kg / 10.96 lbs
4973 g / 48.8 N
|
29.84 kg / 65.78 lbs
~0 Gs
|
| 50 mm |
3.84 kg / 8.47 lbs
1 408 Gs
|
0.58 kg / 1.27 lbs
576 g / 5.7 N
|
3.46 kg / 7.62 lbs
~0 Gs
|
| 60 mm |
1.99 kg / 4.39 lbs
1 014 Gs
|
0.30 kg / 0.66 lbs
299 g / 2.9 N
|
1.79 kg / 3.95 lbs
~0 Gs
|
| 70 mm |
1.08 kg / 2.38 lbs
747 Gs
|
0.16 kg / 0.36 lbs
162 g / 1.6 N
|
0.97 kg / 2.14 lbs
~0 Gs
|
| 80 mm |
0.61 kg / 1.35 lbs
563 Gs
|
0.09 kg / 0.20 lbs
92 g / 0.9 N
|
0.55 kg / 1.22 lbs
~0 Gs
|
| 90 mm |
0.36 kg / 0.80 lbs
432 Gs
|
0.05 kg / 0.12 lbs
54 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 100 mm |
0.22 kg / 0.49 lbs
339 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
2.32 J | |
| 30 mm |
30.69 km/h
(8.52 m/s)
|
5.14 J | |
| 50 mm |
39.22 km/h
(10.89 m/s)
|
8.39 J | |
| 100 mm |
55.39 km/h
(15.39 m/s)
|
16.73 J |
Tabela 9: Odporność na korozję
MW 40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 48 650 Mx | 486.5 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.64 kg | Standard |
| Woda (dno rzeki) |
48.82 kg
(+6.18 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- o grubości wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Uwaga medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zakaz zabawy
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Bezpieczny dystans
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Reakcje alergiczne
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Potężne pole
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
