MPL 40x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020161
GTIN/EAN: 5906301811671
Długość
40 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
180 g
Kierunek magnesowania
↑ osiowy
Udźwig
46.94 kg / 460.51 N
Indukcja magnetyczna
345.80 mT / 3458 Gs
Powłoka
[NiCuNi] nikiel
55.37 ZŁ z VAT / szt. + cena za transport
45.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie napisz przez
nasz formularz online
na stronie kontaktowej.
Udźwig oraz budowę magnesu przetestujesz w naszym
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 40x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020161 |
| GTIN/EAN | 5906301811671 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 180 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 46.94 kg / 460.51 N |
| Indukcja magnetyczna ~ ? | 345.80 mT / 3458 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe dane są rezultat symulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 40x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3458 Gs
345.8 mT
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
niebezpieczny! |
| 1 mm |
3333 Gs
333.3 mT
|
43.62 kg / 96.16 lbs
43616.1 g / 427.9 N
|
niebezpieczny! |
| 2 mm |
3199 Gs
319.9 mT
|
40.19 kg / 88.60 lbs
40189.1 g / 394.3 N
|
niebezpieczny! |
| 3 mm |
3060 Gs
306.0 mT
|
36.77 kg / 81.06 lbs
36767.3 g / 360.7 N
|
niebezpieczny! |
| 5 mm |
2773 Gs
277.3 mT
|
30.19 kg / 66.55 lbs
30187.9 g / 296.1 N
|
niebezpieczny! |
| 10 mm |
2078 Gs
207.8 mT
|
16.95 kg / 37.37 lbs
16950.2 g / 166.3 N
|
niebezpieczny! |
| 15 mm |
1507 Gs
150.7 mT
|
8.91 kg / 19.65 lbs
8913.7 g / 87.4 N
|
uwaga |
| 20 mm |
1085 Gs
108.5 mT
|
4.62 kg / 10.19 lbs
4622.3 g / 45.3 N
|
uwaga |
| 30 mm |
580 Gs
58.0 mT
|
1.32 kg / 2.92 lbs
1322.9 g / 13.0 N
|
bezpieczny |
| 50 mm |
204 Gs
20.4 mT
|
0.16 kg / 0.36 lbs
164.0 g / 1.6 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 40x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| 1 mm | Stal (~0.2) |
8.72 kg / 19.23 lbs
8724.0 g / 85.6 N
|
| 2 mm | Stal (~0.2) |
8.04 kg / 17.72 lbs
8038.0 g / 78.9 N
|
| 3 mm | Stal (~0.2) |
7.35 kg / 16.21 lbs
7354.0 g / 72.1 N
|
| 5 mm | Stal (~0.2) |
6.04 kg / 13.31 lbs
6038.0 g / 59.2 N
|
| 10 mm | Stal (~0.2) |
3.39 kg / 7.47 lbs
3390.0 g / 33.3 N
|
| 15 mm | Stal (~0.2) |
1.78 kg / 3.93 lbs
1782.0 g / 17.5 N
|
| 20 mm | Stal (~0.2) |
0.92 kg / 2.04 lbs
924.0 g / 9.1 N
|
| 30 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
264.0 g / 2.6 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.08 kg / 31.05 lbs
14082.0 g / 138.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.39 kg / 20.70 lbs
9388.0 g / 92.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.69 kg / 10.35 lbs
4694.0 g / 46.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
23.47 kg / 51.74 lbs
23470.0 g / 230.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 40x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.35 kg / 5.17 lbs
2347.0 g / 23.0 N
|
| 1 mm |
|
5.87 kg / 12.94 lbs
5867.5 g / 57.6 N
|
| 2 mm |
|
11.74 kg / 25.87 lbs
11735.0 g / 115.1 N
|
| 3 mm |
|
17.60 kg / 38.81 lbs
17602.5 g / 172.7 N
|
| 5 mm |
|
29.34 kg / 64.68 lbs
29337.5 g / 287.8 N
|
| 10 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
| 11 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
| 12 mm |
|
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 40x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
46.94 kg / 103.48 lbs
46940.0 g / 460.5 N
|
OK |
| 40 °C | -2.2% |
45.91 kg / 101.21 lbs
45907.3 g / 450.4 N
|
OK |
| 60 °C | -4.4% |
44.87 kg / 98.93 lbs
44874.6 g / 440.2 N
|
|
| 80 °C | -6.6% |
43.84 kg / 96.65 lbs
43842.0 g / 430.1 N
|
|
| 100 °C | -28.8% |
33.42 kg / 73.68 lbs
33421.3 g / 327.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
117.92 kg / 259.97 lbs
4 963 Gs
|
17.69 kg / 39.00 lbs
17688 g / 173.5 N
|
N/A |
| 1 mm |
113.82 kg / 250.94 lbs
6 794 Gs
|
17.07 kg / 37.64 lbs
17074 g / 167.5 N
|
102.44 kg / 225.84 lbs
~0 Gs
|
| 2 mm |
109.57 kg / 241.57 lbs
6 666 Gs
|
16.44 kg / 36.23 lbs
16436 g / 161.2 N
|
98.62 kg / 217.41 lbs
~0 Gs
|
| 3 mm |
105.28 kg / 232.10 lbs
6 534 Gs
|
15.79 kg / 34.81 lbs
15792 g / 154.9 N
|
94.75 kg / 208.89 lbs
~0 Gs
|
| 5 mm |
96.65 kg / 213.08 lbs
6 261 Gs
|
14.50 kg / 31.96 lbs
14498 g / 142.2 N
|
86.99 kg / 191.77 lbs
~0 Gs
|
| 10 mm |
75.84 kg / 167.19 lbs
5 546 Gs
|
11.38 kg / 25.08 lbs
11376 g / 111.6 N
|
68.25 kg / 150.47 lbs
~0 Gs
|
| 20 mm |
42.58 kg / 93.88 lbs
4 155 Gs
|
6.39 kg / 14.08 lbs
6387 g / 62.7 N
|
38.32 kg / 84.49 lbs
~0 Gs
|
| 50 mm |
6.12 kg / 13.49 lbs
1 575 Gs
|
0.92 kg / 2.02 lbs
918 g / 9.0 N
|
5.51 kg / 12.14 lbs
~0 Gs
|
| 60 mm |
3.32 kg / 7.33 lbs
1 161 Gs
|
0.50 kg / 1.10 lbs
499 g / 4.9 N
|
2.99 kg / 6.59 lbs
~0 Gs
|
| 70 mm |
1.87 kg / 4.12 lbs
871 Gs
|
0.28 kg / 0.62 lbs
281 g / 2.8 N
|
1.68 kg / 3.71 lbs
~0 Gs
|
| 80 mm |
1.09 kg / 2.41 lbs
665 Gs
|
0.16 kg / 0.36 lbs
164 g / 1.6 N
|
0.98 kg / 2.17 lbs
~0 Gs
|
| 90 mm |
0.66 kg / 1.46 lbs
517 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 100 mm |
0.41 kg / 0.91 lbs
409 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 40x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.62 km/h
(5.45 m/s)
|
2.67 J | |
| 30 mm |
28.70 km/h
(7.97 m/s)
|
5.72 J | |
| 50 mm |
36.50 km/h
(10.14 m/s)
|
9.25 J | |
| 100 mm |
51.50 km/h
(14.31 m/s)
|
18.42 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 58 107 Mx | 581.1 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 46.94 kg | Standard |
| Woda (dno rzeki) |
53.75 kg
(+6.81 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, która służy jako zwora magnetyczna
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenia
Ochrona dłoni
Duże magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ryzyko pożaru
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ochrona oczu
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Niszczenie danych
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Zagrożenie życia
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie implantu.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Tylko dla dorosłych
Te produkty magnetyczne nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
