MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030206
GTIN/EAN: 5906301812234
Średnica
8 mm [±0,1 mm]
Średnica wewnętrzna Ø
6/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.91 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.37 kg / 13.48 N
Indukcja magnetyczna
371.53 mT / 3715 Gs
Powłoka
[NiCuNi] nikiel
0.701 ZŁ z VAT / szt. + cena za transport
0.570 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub napisz za pomocą
formularz kontaktowy
na stronie kontakt.
Parametry a także wygląd elementów magnetycznych obliczysz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030206 |
| GTIN/EAN | 5906301812234 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 8 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.91 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.37 kg / 13.48 N |
| Indukcja magnetyczna ~ ? | 371.53 mT / 3715 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione dane są rezultat analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 8x6/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3327 Gs
332.7 mT
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
niskie ryzyko |
| 1 mm |
2612 Gs
261.2 mT
|
0.84 kg / 1.86 lbs
844.4 g / 8.3 N
|
niskie ryzyko |
| 2 mm |
1884 Gs
188.4 mT
|
0.44 kg / 0.97 lbs
439.3 g / 4.3 N
|
niskie ryzyko |
| 3 mm |
1310 Gs
131.0 mT
|
0.21 kg / 0.47 lbs
212.4 g / 2.1 N
|
niskie ryzyko |
| 5 mm |
637 Gs
63.7 mT
|
0.05 kg / 0.11 lbs
50.3 g / 0.5 N
|
niskie ryzyko |
| 10 mm |
151 Gs
15.1 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 8x6/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
88.0 g / 0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 8x6/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.41 kg / 0.91 lbs
411.0 g / 4.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.30 lbs
137.0 g / 1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.69 kg / 1.51 lbs
685.0 g / 6.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 8x6/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.30 lbs
137.0 g / 1.3 N
|
| 1 mm |
|
0.34 kg / 0.76 lbs
342.5 g / 3.4 N
|
| 2 mm |
|
0.69 kg / 1.51 lbs
685.0 g / 6.7 N
|
| 3 mm |
|
1.03 kg / 2.27 lbs
1027.5 g / 10.1 N
|
| 5 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 10 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 11 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 12 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 8x6/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
OK |
| 40 °C | -2.2% |
1.34 kg / 2.95 lbs
1339.9 g / 13.1 N
|
OK |
| 60 °C | -4.4% |
1.31 kg / 2.89 lbs
1309.7 g / 12.8 N
|
|
| 80 °C | -6.6% |
1.28 kg / 2.82 lbs
1279.6 g / 12.6 N
|
|
| 100 °C | -28.8% |
0.98 kg / 2.15 lbs
975.4 g / 9.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 8x6/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.36 kg / 5.20 lbs
4 867 Gs
|
0.35 kg / 0.78 lbs
354 g / 3.5 N
|
N/A |
| 1 mm |
1.90 kg / 4.20 lbs
5 981 Gs
|
0.29 kg / 0.63 lbs
286 g / 2.8 N
|
1.71 kg / 3.78 lbs
~0 Gs
|
| 2 mm |
1.45 kg / 3.20 lbs
5 223 Gs
|
0.22 kg / 0.48 lbs
218 g / 2.1 N
|
1.31 kg / 2.88 lbs
~0 Gs
|
| 3 mm |
1.06 kg / 2.34 lbs
4 468 Gs
|
0.16 kg / 0.35 lbs
159 g / 1.6 N
|
0.96 kg / 2.11 lbs
~0 Gs
|
| 5 mm |
0.53 kg / 1.16 lbs
3 148 Gs
|
0.08 kg / 0.17 lbs
79 g / 0.8 N
|
0.47 kg / 1.05 lbs
~0 Gs
|
| 10 mm |
0.09 kg / 0.19 lbs
1 274 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
301 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 8x6/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 8x6/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.18 km/h
(10.88 m/s)
|
0.05 J | |
| 30 mm |
67.78 km/h
(18.83 m/s)
|
0.16 J | |
| 50 mm |
87.50 km/h
(24.31 m/s)
|
0.27 J | |
| 100 mm |
123.74 km/h
(34.37 m/s)
|
0.54 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 8x6/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 8x6/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 299 Mx | 13.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 8x6/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.37 kg | Standard |
| Woda (dno rzeki) |
1.57 kg
(+0.20 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- przy całkowitym braku odstępu (bez farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Łatwopalność
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Kruchy spiek
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Nie zbliżaj do komputera
Bardzo silne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Implanty kardiologiczne
Osoby z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Uwaga: zadławienie
Silne magnesy to nie zabawki. Inhalacja kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
