MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030250
GTIN/EAN: 5906301812265
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
15.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.64 kg / 35.69 N
Indukcja magnetyczna
121.58 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo zostaw wiadomość za pomocą
formularz zapytania
na stronie kontakt.
Właściwości i formę magnesów neodymowych testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030250 |
| GTIN/EAN | 5906301812265 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 15.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.64 kg / 35.69 N |
| Indukcja magnetyczna ~ ? | 121.58 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Niniejsze informacje stanowią bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MP 30x7/3x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1039 Gs
103.9 mT
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
uwaga |
| 1 mm |
1015 Gs
101.5 mT
|
3.48 kg / 7.67 lbs
3477.6 g / 34.1 N
|
uwaga |
| 2 mm |
980 Gs
98.0 mT
|
3.24 kg / 7.14 lbs
3240.7 g / 31.8 N
|
uwaga |
| 3 mm |
936 Gs
93.6 mT
|
2.95 kg / 6.51 lbs
2951.6 g / 29.0 N
|
uwaga |
| 5 mm |
827 Gs
82.7 mT
|
2.31 kg / 5.08 lbs
2305.8 g / 22.6 N
|
uwaga |
| 10 mm |
539 Gs
53.9 mT
|
0.98 kg / 2.16 lbs
981.0 g / 9.6 N
|
bezpieczny |
| 15 mm |
329 Gs
32.9 mT
|
0.37 kg / 0.80 lbs
365.1 g / 3.6 N
|
bezpieczny |
| 20 mm |
202 Gs
20.2 mT
|
0.14 kg / 0.30 lbs
137.9 g / 1.4 N
|
bezpieczny |
| 30 mm |
85 Gs
8.5 mT
|
0.02 kg / 0.05 lbs
24.6 g / 0.2 N
|
bezpieczny |
| 50 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
1.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 30x7/3x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.73 kg / 1.60 lbs
728.0 g / 7.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| 2 mm | Stal (~0.2) |
0.65 kg / 1.43 lbs
648.0 g / 6.4 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 1.30 lbs
590.0 g / 5.8 N
|
| 5 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
462.0 g / 4.5 N
|
| 10 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 30x7/3x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.09 kg / 2.41 lbs
1092.0 g / 10.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.73 kg / 1.60 lbs
728.0 g / 7.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.82 kg / 4.01 lbs
1820.0 g / 17.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 30x7/3x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.36 kg / 0.80 lbs
364.0 g / 3.6 N
|
| 1 mm |
|
0.91 kg / 2.01 lbs
910.0 g / 8.9 N
|
| 2 mm |
|
1.82 kg / 4.01 lbs
1820.0 g / 17.9 N
|
| 3 mm |
|
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| 5 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 10 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 11 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
| 12 mm |
|
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MP 30x7/3x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.64 kg / 8.02 lbs
3640.0 g / 35.7 N
|
OK |
| 40 °C | -2.2% |
3.56 kg / 7.85 lbs
3559.9 g / 34.9 N
|
OK |
| 60 °C | -4.4% |
3.48 kg / 7.67 lbs
3479.8 g / 34.1 N
|
|
| 80 °C | -6.6% |
3.40 kg / 7.50 lbs
3399.8 g / 33.4 N
|
|
| 100 °C | -28.8% |
2.59 kg / 5.71 lbs
2591.7 g / 25.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MP 30x7/3x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.96 kg / 8.73 lbs
1 995 Gs
|
0.59 kg / 1.31 lbs
594 g / 5.8 N
|
N/A |
| 1 mm |
3.88 kg / 8.56 lbs
2 058 Gs
|
0.58 kg / 1.28 lbs
582 g / 5.7 N
|
3.49 kg / 7.70 lbs
~0 Gs
|
| 2 mm |
3.78 kg / 8.34 lbs
2 031 Gs
|
0.57 kg / 1.25 lbs
567 g / 5.6 N
|
3.40 kg / 7.50 lbs
~0 Gs
|
| 3 mm |
3.66 kg / 8.07 lbs
1 998 Gs
|
0.55 kg / 1.21 lbs
549 g / 5.4 N
|
3.30 kg / 7.26 lbs
~0 Gs
|
| 5 mm |
3.37 kg / 7.43 lbs
1 918 Gs
|
0.51 kg / 1.12 lbs
506 g / 5.0 N
|
3.04 kg / 6.69 lbs
~0 Gs
|
| 10 mm |
2.51 kg / 5.53 lbs
1 654 Gs
|
0.38 kg / 0.83 lbs
376 g / 3.7 N
|
2.26 kg / 4.97 lbs
~0 Gs
|
| 20 mm |
1.07 kg / 2.35 lbs
1 079 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
258 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
171 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
118 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 30x7/3x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 30x7/3x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.73 km/h
(4.92 m/s)
|
0.19 J | |
| 30 mm |
26.67 km/h
(7.41 m/s)
|
0.43 J | |
| 50 mm |
34.29 km/h
(9.53 m/s)
|
0.71 J | |
| 100 mm |
48.48 km/h
(13.47 m/s)
|
1.43 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 30x7/3x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 30x7/3x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 395 Mx | 84.0 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 30x7/3x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.64 kg | Standard |
| Woda (dno rzeki) |
4.17 kg
(+0.53 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig mierzono stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Ryzyko uczulenia
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może wywołać wysypkę. Zalecamy stosowanie rękawic bezlateksowych.
Ochrona oczu
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Zagrożenie fizyczne
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Limity termiczne
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Kompas i GPS
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Siła neodymu
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Uwaga medyczna
Pacjenci z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę implantu.
