MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030333
GTIN/EAN: 5906301812272
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.65 kg / 65.21 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
7.75 ZŁ z VAT / szt. + cena za transport
6.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz poprzez
formularz zapytania
w sekcji kontakt.
Moc i wygląd magnesu wyliczysz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030333 |
| GTIN/EAN | 5906301812272 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.65 kg / 65.21 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze dane stanowią bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MP 20x8/4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2424 Gs
242.4 mT
|
6.65 kg / 6650.0 g
65.2 N
|
mocny |
| 1 mm |
2265 Gs
226.5 mT
|
5.81 kg / 5807.9 g
57.0 N
|
mocny |
| 2 mm |
2070 Gs
207.0 mT
|
4.85 kg / 4851.0 g
47.6 N
|
mocny |
| 3 mm |
1858 Gs
185.8 mT
|
3.91 kg / 3906.5 g
38.3 N
|
mocny |
| 5 mm |
1437 Gs
143.7 mT
|
2.34 kg / 2338.7 g
22.9 N
|
mocny |
| 10 mm |
691 Gs
69.1 mT
|
0.54 kg / 540.5 g
5.3 N
|
słaby uchwyt |
| 15 mm |
343 Gs
34.3 mT
|
0.13 kg / 133.3 g
1.3 N
|
słaby uchwyt |
| 20 mm |
186 Gs
18.6 mT
|
0.04 kg / 39.3 g
0.4 N
|
słaby uchwyt |
| 30 mm |
70 Gs
7.0 mT
|
0.01 kg / 5.5 g
0.1 N
|
słaby uchwyt |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.4 g
0.0 N
|
słaby uchwyt |
MP 20x8/4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.33 kg / 1330.0 g
13.0 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.97 kg / 970.0 g
9.5 N
|
| 3 mm | Stal (~0.2) |
0.78 kg / 782.0 g
7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 468.0 g
4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 20x8/4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.00 kg / 1995.0 g
19.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.33 kg / 1330.0 g
13.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 665.0 g
6.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.33 kg / 3325.0 g
32.6 N
|
MP 20x8/4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 665.0 g
6.5 N
|
| 1 mm |
|
1.66 kg / 1662.5 g
16.3 N
|
| 2 mm |
|
3.33 kg / 3325.0 g
32.6 N
|
| 5 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
| 10 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
MP 20x8/4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.65 kg / 6650.0 g
65.2 N
|
OK |
| 40 °C | -2.2% |
6.50 kg / 6503.7 g
63.8 N
|
OK |
| 60 °C | -4.4% |
6.36 kg / 6357.4 g
62.4 N
|
|
| 80 °C | -6.6% |
6.21 kg / 6211.1 g
60.9 N
|
|
| 100 °C | -28.8% |
4.73 kg / 4734.8 g
46.4 N
|
MP 20x8/4x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.28 kg / 9284 g
91.1 N
4 012 Gs
|
N/A |
| 1 mm |
8.73 kg / 8732 g
85.7 N
4 701 Gs
|
7.86 kg / 7859 g
77.1 N
~0 Gs
|
| 2 mm |
8.11 kg / 8108 g
79.5 N
4 530 Gs
|
7.30 kg / 7297 g
71.6 N
~0 Gs
|
| 3 mm |
7.45 kg / 7448 g
73.1 N
4 342 Gs
|
6.70 kg / 6703 g
65.8 N
~0 Gs
|
| 5 mm |
6.10 kg / 6102 g
59.9 N
3 930 Gs
|
5.49 kg / 5492 g
53.9 N
~0 Gs
|
| 10 mm |
3.27 kg / 3265 g
32.0 N
2 875 Gs
|
2.94 kg / 2939 g
28.8 N
~0 Gs
|
| 20 mm |
0.75 kg / 755 g
7.4 N
1 382 Gs
|
0.68 kg / 679 g
6.7 N
~0 Gs
|
| 50 mm |
0.02 kg / 19 g
0.2 N
220 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
MP 20x8/4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MP 20x8/4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.67 km/h
(7.13 m/s)
|
0.29 J | |
| 30 mm |
42.38 km/h
(11.77 m/s)
|
0.78 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.30 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.61 J |
MP 20x8/4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 20x8/4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 218 Mx | 72.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MP 20x8/4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.65 kg | Standard |
| Woda (dno rzeki) |
7.61 kg
(+0.96 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Najwyższa nośność magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zagrożenie fizyczne
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Alergia na nikiel
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
To nie jest zabawka
Magnesy neodymowe nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
