MW 30x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010056
GTIN/EAN: 5906301810551
Średnica Ø
30 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
26.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.71 kg / 85.44 N
Indukcja magnetyczna
196.02 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
9.59 ZŁ z VAT / szt. + cena za transport
7.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie napisz za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Siłę oraz budowę magnesu sprawdzisz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 30x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 30x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010056 |
| GTIN/EAN | 5906301810551 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 30 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 26.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.71 kg / 85.44 N |
| Indukcja magnetyczna ~ ? | 196.02 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt analizy inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 30x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1960 Gs
196.0 mT
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
mocny |
| 1 mm |
1890 Gs
189.0 mT
|
8.10 kg / 17.86 lbs
8100.7 g / 79.5 N
|
mocny |
| 2 mm |
1802 Gs
180.2 mT
|
7.37 kg / 16.24 lbs
7366.2 g / 72.3 N
|
mocny |
| 3 mm |
1702 Gs
170.2 mT
|
6.57 kg / 14.47 lbs
6565.7 g / 64.4 N
|
mocny |
| 5 mm |
1479 Gs
147.9 mT
|
4.96 kg / 10.93 lbs
4956.4 g / 48.6 N
|
mocny |
| 10 mm |
945 Gs
94.5 mT
|
2.02 kg / 4.46 lbs
2024.4 g / 19.9 N
|
mocny |
| 15 mm |
576 Gs
57.6 mT
|
0.75 kg / 1.66 lbs
752.1 g / 7.4 N
|
bezpieczny |
| 20 mm |
356 Gs
35.6 mT
|
0.29 kg / 0.64 lbs
288.1 g / 2.8 N
|
bezpieczny |
| 30 mm |
153 Gs
15.3 mT
|
0.05 kg / 0.12 lbs
53.2 g / 0.5 N
|
bezpieczny |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 30x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.57 lbs
1620.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.90 lbs
1314.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 15 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 30x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.61 kg / 5.76 lbs
2613.0 g / 25.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 30x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| 1 mm |
|
2.18 kg / 4.80 lbs
2177.5 g / 21.4 N
|
| 2 mm |
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
| 3 mm |
|
6.53 kg / 14.40 lbs
6532.5 g / 64.1 N
|
| 5 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 10 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 11 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 12 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 30x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
OK |
| 40 °C | -2.2% |
8.52 kg / 18.78 lbs
8518.4 g / 83.6 N
|
OK |
| 60 °C | -4.4% |
8.33 kg / 18.36 lbs
8326.8 g / 81.7 N
|
|
| 80 °C | -6.6% |
8.14 kg / 17.93 lbs
8135.1 g / 79.8 N
|
|
| 100 °C | -28.8% |
6.20 kg / 13.67 lbs
6201.5 g / 60.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 30x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.74 kg / 36.91 lbs
3 437 Gs
|
2.51 kg / 5.54 lbs
2511 g / 24.6 N
|
N/A |
| 1 mm |
16.20 kg / 35.71 lbs
3 856 Gs
|
2.43 kg / 5.36 lbs
2429 g / 23.8 N
|
14.58 kg / 32.14 lbs
~0 Gs
|
| 2 mm |
15.57 kg / 34.33 lbs
3 780 Gs
|
2.34 kg / 5.15 lbs
2335 g / 22.9 N
|
14.01 kg / 30.89 lbs
~0 Gs
|
| 3 mm |
14.89 kg / 32.82 lbs
3 696 Gs
|
2.23 kg / 4.92 lbs
2233 g / 21.9 N
|
13.40 kg / 29.54 lbs
~0 Gs
|
| 5 mm |
13.40 kg / 29.54 lbs
3 507 Gs
|
2.01 kg / 4.43 lbs
2010 g / 19.7 N
|
12.06 kg / 26.58 lbs
~0 Gs
|
| 10 mm |
9.53 kg / 21.00 lbs
2 957 Gs
|
1.43 kg / 3.15 lbs
1429 g / 14.0 N
|
8.57 kg / 18.90 lbs
~0 Gs
|
| 20 mm |
3.89 kg / 8.58 lbs
1 890 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.50 kg / 7.72 lbs
~0 Gs
|
| 50 mm |
0.23 kg / 0.50 lbs
458 Gs
|
0.03 kg / 0.08 lbs
34 g / 0.3 N
|
0.21 kg / 0.45 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.23 lbs
307 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.11 lbs
213 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
153 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
113 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 30x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 30x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.77 km/h
(5.77 m/s)
|
0.44 J | |
| 30 mm |
31.78 km/h
(8.83 m/s)
|
1.03 J | |
| 50 mm |
40.89 km/h
(11.36 m/s)
|
1.71 J | |
| 100 mm |
57.81 km/h
(16.06 m/s)
|
3.42 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 30x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 30x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 658 Mx | 166.6 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 30x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.71 kg | Standard |
| Woda (dno rzeki) |
9.97 kg
(+1.26 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny to min. 10 mm
- z powierzchnią idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet bardzo mała przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Bezpieczna praca przy magnesach neodymowych
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Poważne obrażenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Uwaga: zadławienie
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Ostrożność wymagana
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Zakaz obróbki
Pył generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
