MP 25x5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030193
GTIN/EAN: 5906301812104
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
17.67 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.66 kg / 75.12 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
6.00 ZŁ z VAT / szt. + cena za transport
4.88 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz poprzez
nasz formularz online
w sekcji kontakt.
Masę a także kształt elementów magnetycznych obliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MP 25x5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030193 |
| GTIN/EAN | 5906301812104 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 17.67 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.66 kg / 75.12 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze informacje stanowią wynik kalkulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MP 25x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
uwaga |
| 1 mm |
5310 Gs
531.0 mT
|
6.47 kg / 14.27 lbs
6471.0 g / 63.5 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
5.39 kg / 11.88 lbs
5388.6 g / 52.9 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
4.44 kg / 9.78 lbs
4437.9 g / 43.5 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
2.93 kg / 6.47 lbs
2934.8 g / 28.8 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
0.99 kg / 2.17 lbs
985.9 g / 9.7 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.35 kg / 0.77 lbs
347.9 g / 3.4 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.14 kg / 0.30 lbs
137.0 g / 1.3 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.03 kg / 0.06 lbs
29.0 g / 0.3 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 25x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.53 kg / 3.38 lbs
1532.0 g / 15.0 N
|
| 1 mm | Stal (~0.2) |
1.29 kg / 2.85 lbs
1294.0 g / 12.7 N
|
| 2 mm | Stal (~0.2) |
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| 3 mm | Stal (~0.2) |
0.89 kg / 1.96 lbs
888.0 g / 8.7 N
|
| 5 mm | Stal (~0.2) |
0.59 kg / 1.29 lbs
586.0 g / 5.7 N
|
| 10 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 25x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.30 kg / 5.07 lbs
2298.0 g / 22.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.53 kg / 3.38 lbs
1532.0 g / 15.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 1.69 lbs
766.0 g / 7.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.83 kg / 8.44 lbs
3830.0 g / 37.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 25x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.69 lbs
766.0 g / 7.5 N
|
| 1 mm |
|
1.92 kg / 4.22 lbs
1915.0 g / 18.8 N
|
| 2 mm |
|
3.83 kg / 8.44 lbs
3830.0 g / 37.6 N
|
| 3 mm |
|
5.75 kg / 12.67 lbs
5745.0 g / 56.4 N
|
| 5 mm |
|
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 10 mm |
|
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 11 mm |
|
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 12 mm |
|
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MP 25x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
OK |
| 40 °C | -2.2% |
7.49 kg / 16.52 lbs
7491.5 g / 73.5 N
|
OK |
| 60 °C | -4.4% |
7.32 kg / 16.14 lbs
7323.0 g / 71.8 N
|
OK |
| 80 °C | -6.6% |
7.15 kg / 15.77 lbs
7154.4 g / 70.2 N
|
|
| 100 °C | -28.8% |
5.45 kg / 12.02 lbs
5453.9 g / 53.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MP 25x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
82.42 kg / 181.72 lbs
6 082 Gs
|
12.36 kg / 27.26 lbs
12364 g / 121.3 N
|
N/A |
| 1 mm |
75.95 kg / 167.44 lbs
11 091 Gs
|
11.39 kg / 25.12 lbs
11392 g / 111.8 N
|
68.35 kg / 150.69 lbs
~0 Gs
|
| 2 mm |
69.63 kg / 153.51 lbs
10 620 Gs
|
10.44 kg / 23.03 lbs
10445 g / 102.5 N
|
62.67 kg / 138.16 lbs
~0 Gs
|
| 3 mm |
63.64 kg / 140.29 lbs
10 153 Gs
|
9.55 kg / 21.04 lbs
9545 g / 93.6 N
|
57.27 kg / 126.26 lbs
~0 Gs
|
| 5 mm |
52.69 kg / 116.16 lbs
9 238 Gs
|
7.90 kg / 17.42 lbs
7903 g / 77.5 N
|
47.42 kg / 104.54 lbs
~0 Gs
|
| 10 mm |
31.58 kg / 69.62 lbs
7 152 Gs
|
4.74 kg / 10.44 lbs
4737 g / 46.5 N
|
28.42 kg / 62.66 lbs
~0 Gs
|
| 20 mm |
10.61 kg / 23.39 lbs
4 145 Gs
|
1.59 kg / 3.51 lbs
1591 g / 15.6 N
|
9.55 kg / 21.05 lbs
~0 Gs
|
| 50 mm |
0.65 kg / 1.43 lbs
1 024 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.69 lbs
712 Gs
|
0.05 kg / 0.10 lbs
47 g / 0.5 N
|
0.28 kg / 0.62 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.36 lbs
514 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 80 mm |
0.09 kg / 0.20 lbs
383 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 25x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 25x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.62 km/h
(6.28 m/s)
|
0.35 J | |
| 30 mm |
36.46 km/h
(10.13 m/s)
|
0.91 J | |
| 50 mm |
46.96 km/h
(13.05 m/s)
|
1.50 J | |
| 100 mm |
66.40 km/h
(18.45 m/s)
|
3.01 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.66 kg | Standard |
| Woda (dno rzeki) |
8.77 kg
(+1.11 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a blachą), gdyż nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Siła neodymu
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Zagrożenie zapłonem
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Produkt nie dla dzieci
Te produkty magnetyczne to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Kompas i GPS
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
