MP 10x4.3x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030178
GTIN/EAN: 5906301811954
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
4.3 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.92 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.28 kg / 22.35 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
1.045 ZŁ z VAT / szt. + cena za transport
0.850 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość korzystając z
formularz zapytania
w sekcji kontakt.
Masę a także budowę magnesów neodymowych wyliczysz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MP 10x4.3x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x4.3x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030178 |
| GTIN/EAN | 5906301811954 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 4.3 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.92 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.28 kg / 22.35 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Poniższe wartości są wynik analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 10x4.3x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
2.28 kg / 2280.0 g
22.4 N
|
mocny |
| 1 mm |
4915 Gs
491.5 mT
|
1.47 kg / 1473.3 g
14.5 N
|
niskie ryzyko |
| 2 mm |
3833 Gs
383.3 mT
|
0.90 kg / 895.7 g
8.8 N
|
niskie ryzyko |
| 3 mm |
2949 Gs
294.9 mT
|
0.53 kg / 530.3 g
5.2 N
|
niskie ryzyko |
| 5 mm |
1761 Gs
176.1 mT
|
0.19 kg / 189.1 g
1.9 N
|
niskie ryzyko |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 22.8 g
0.2 N
|
niskie ryzyko |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 4.9 g
0.0 N
|
niskie ryzyko |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 1.5 g
0.0 N
|
niskie ryzyko |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 10x4.3x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 456.0 g
4.5 N
|
| 1 mm | Stal (~0.2) |
0.29 kg / 294.0 g
2.9 N
|
| 2 mm | Stal (~0.2) |
0.18 kg / 180.0 g
1.8 N
|
| 3 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 10x4.3x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.68 kg / 684.0 g
6.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 456.0 g
4.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 228.0 g
2.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.14 kg / 1140.0 g
11.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 10x4.3x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 228.0 g
2.2 N
|
| 1 mm |
|
0.57 kg / 570.0 g
5.6 N
|
| 2 mm |
|
1.14 kg / 1140.0 g
11.2 N
|
| 5 mm |
|
2.28 kg / 2280.0 g
22.4 N
|
| 10 mm |
|
2.28 kg / 2280.0 g
22.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MP 10x4.3x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.28 kg / 2280.0 g
22.4 N
|
OK |
| 40 °C | -2.2% |
2.23 kg / 2229.8 g
21.9 N
|
OK |
| 60 °C | -4.4% |
2.18 kg / 2179.7 g
21.4 N
|
OK |
| 80 °C | -6.6% |
2.13 kg / 2129.5 g
20.9 N
|
|
| 100 °C | -28.8% |
1.62 kg / 1623.4 g
15.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 10x4.3x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.93 kg / 12926 g
126.8 N
6 169 Gs
|
N/A |
| 1 mm |
10.50 kg / 10505 g
103.1 N
11 025 Gs
|
9.45 kg / 9454 g
92.7 N
~0 Gs
|
| 2 mm |
8.35 kg / 8353 g
81.9 N
9 831 Gs
|
7.52 kg / 7518 g
73.7 N
~0 Gs
|
| 3 mm |
6.55 kg / 6547 g
64.2 N
8 703 Gs
|
5.89 kg / 5892 g
57.8 N
~0 Gs
|
| 5 mm |
3.91 kg / 3913 g
38.4 N
6 729 Gs
|
3.52 kg / 3522 g
34.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1072 g
10.5 N
3 522 Gs
|
0.96 kg / 965 g
9.5 N
~0 Gs
|
| 20 mm |
0.13 kg / 129 g
1.3 N
1 223 Gs
|
0.12 kg / 116 g
1.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
194 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 10x4.3x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 10x4.3x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.97 km/h
(9.71 m/s)
|
0.09 J | |
| 30 mm |
60.20 km/h
(16.72 m/s)
|
0.27 J | |
| 50 mm |
77.71 km/h
(21.59 m/s)
|
0.45 J | |
| 100 mm |
109.90 km/h
(30.53 m/s)
|
0.89 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 10x4.3x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 10x4.3x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 10x4.3x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.28 kg | Standard |
| Woda (dno rzeki) |
2.61 kg
(+0.33 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- z użyciem płyty ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią idealnie równą
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
To nie jest zabawka
Magnesy neodymowe nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Ryzyko złamań
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Elektronika precyzyjna
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Niszczenie danych
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko rozmagnesowania
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
