SM 32x300 [2xM8] / N42 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130300
GTIN/EAN: 5906301812937
Średnica Ø
32 mm [±1 mm]
Wysokość
300 mm [±1 mm]
Waga
1610 g
Strumień magnetyczny
~ 8 000 Gauss [±5%]
897.90 ZŁ z VAT / szt. + cena za transport
730.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub napisz przez
formularz zgłoszeniowy
na stronie kontakt.
Siłę oraz formę magnesu wyliczysz w naszym
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - SM 32x300 [2xM8] / N42 - separator magnetyczny
Specyfikacja / charakterystyka - SM 32x300 [2xM8] / N42 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130300 |
| GTIN/EAN | 5906301812937 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 32 mm [±1 mm] |
| Wysokość | 300 mm [±1 mm] |
| Waga | 1610 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 8 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 11 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N42
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.9-13.2 | kGs |
| remanencja Br [min. - maks.] ? | 1290-1320 | mT |
| koercja bHc ? | 10.8-12.0 | kOe |
| koercja bHc ? | 860-955 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 40-42 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 318-334 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Tabela 1: Konstrukcja wałka
SM 32x300 [2xM8] / N42
| Parametr | Wartość | Opis / Jednostka |
|---|---|---|
| Średnica (Ø) | 32 | mm |
| Długość całkowita | 300 | mm (L) |
| Długość aktywna | 264 | mm |
| Liczba sekcji | 11 | modułów |
| Strefa martwa | 36 | mm (2x 18mm starter) |
| Waga (szacowana) | ~1834 | g |
| Pow. aktywna | 265 | cm² (Area) |
| Materiał obudowy | AISI 304 | 1.4301 (Inox) |
| Wykończenie | Ra < 0.8 µm | Polerowane |
| Klasa temp. | 80°C | Standard (N) |
| Spadek siły (przy max °C) | -12.8% | Strata odwracalna (fizyka) |
| Siła (obliczona) | 26.2 | kg (teoret.) |
| Indukcja (pow.) | ~8 000 | Gauss (Max) |
Wykres 2: Profil pola (11 sekcji)
Wykres 3: Wydajność temperaturowa
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Ochrona urządzeń
Potężne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Limity termiczne
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko złamań
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Ryzyko uczulenia
Niektóre osoby wykazuje nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może powodować zaczerwienienie skóry. Rekomendujemy używanie rękawic bezlateksowych.
