SM 32x175 [2xM8] / N52 - separator magnetyczny
separator magnetyczny
Numer katalogowy 130359
GTIN: 5906301813071
Średnica Ø
32 mm [±1 mm]
Wysokość
175 mm [±1 mm]
Waga
970 g
Strumień magnetyczny
~ 10 000 Gauss [±5%]
602.70 ZŁ z VAT / szt. + cena za transport
490.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co kupić?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie zostaw wiadomość korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości oraz kształt magnesu neodymowego sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
SM 32x175 [2xM8] / N52 - separator magnetyczny
Specyfikacja / charakterystyka SM 32x175 [2xM8] / N52 - separator magnetyczny
| właściwości | wartości |
|---|---|
| Nr kat. | 130359 |
| GTIN | 5906301813071 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 32 mm [±1 mm] |
| Wysokość | 175 mm [±1 mm] |
| Waga | 970 g |
| Rodzaj materiału | Stal nierdzewna AISI 304 / A2 |
| Strumień magnetyczny | ~ 10 000 Gauss [±5%] |
| Rozmiar/ilość mocowania | 2xM8 |
| Biegunowość | obwodowa - 6 nabiegunników |
| Grubość rury osłonowej | 1 mm |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N52
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 14.2-14.7 | kGs |
| remanencja Br [Min. - Max.] ? | 1420-1470 | T |
| koercja bHc ? | 10.8-12.5 | kOe |
| koercja bHc ? | 860-995 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 48-53 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 380-422 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych NdFeB.
Należy pamiętać, iż obok ekstremalnej siły, produkty te wyróżniają się następującymi plusami:
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
Warto wiedzieć, iż udźwig roboczy może być niższe pod wpływem następujących czynników, w kolejności ważności:
- Dystans – obecność ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
* Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Zalety oraz wady magnesów neodymowych NdFeB.
Należy pamiętać, iż obok ekstremalnej siły, produkty te wyróżniają się następującymi plusami:
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
Warto wiedzieć, iż udźwig roboczy może być niższe pod wpływem następujących czynników, w kolejności ważności:
- Dystans – obecność ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal nie zamyka strumienia, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
* Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Świadome użytkowanie
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Zakaz obróbki
Pył powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od dzieci i zwierząt.
Wrażliwość na ciepło
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
