MPL 50x50x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020167
GTIN/EAN: 5906301811732
Długość
50 mm [±0,1 mm]
Szerokość
50 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
187.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
33.73 kg / 330.92 N
Indukcja magnetyczna
209.75 mT / 2097 Gs
Powłoka
[NiCuNi] nikiel
42.88 ZŁ z VAT / szt. + cena za transport
34.86 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub zostaw wiadomość poprzez
formularz kontaktowy
w sekcji kontakt.
Siłę i wygląd magnesów wyliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MPL 50x50x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x50x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020167 |
| GTIN/EAN | 5906301811732 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 50 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 187.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 33.73 kg / 330.92 N |
| Indukcja magnetyczna ~ ? | 209.75 mT / 2097 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione dane są rezultat analizy matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 50x50x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2097 Gs
209.7 mT
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
miażdżący |
| 1 mm |
2056 Gs
205.6 mT
|
32.43 kg / 71.50 lbs
32430.0 g / 318.1 N
|
miażdżący |
| 2 mm |
2009 Gs
200.9 mT
|
30.96 kg / 68.27 lbs
30964.6 g / 303.8 N
|
miażdżący |
| 3 mm |
1957 Gs
195.7 mT
|
29.38 kg / 64.77 lbs
29380.4 g / 288.2 N
|
miażdżący |
| 5 mm |
1841 Gs
184.1 mT
|
25.99 kg / 57.30 lbs
25992.3 g / 255.0 N
|
miażdżący |
| 10 mm |
1514 Gs
151.4 mT
|
17.58 kg / 38.75 lbs
17577.6 g / 172.4 N
|
miażdżący |
| 15 mm |
1194 Gs
119.4 mT
|
10.93 kg / 24.10 lbs
10931.8 g / 107.2 N
|
miażdżący |
| 20 mm |
922 Gs
92.2 mT
|
6.51 kg / 14.36 lbs
6512.2 g / 63.9 N
|
uwaga |
| 30 mm |
543 Gs
54.3 mT
|
2.26 kg / 4.98 lbs
2260.0 g / 22.2 N
|
uwaga |
| 50 mm |
209 Gs
20.9 mT
|
0.33 kg / 0.74 lbs
334.1 g / 3.3 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 50x50x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| 1 mm | Stal (~0.2) |
6.49 kg / 14.30 lbs
6486.0 g / 63.6 N
|
| 2 mm | Stal (~0.2) |
6.19 kg / 13.65 lbs
6192.0 g / 60.7 N
|
| 3 mm | Stal (~0.2) |
5.88 kg / 12.95 lbs
5876.0 g / 57.6 N
|
| 5 mm | Stal (~0.2) |
5.20 kg / 11.46 lbs
5198.0 g / 51.0 N
|
| 10 mm | Stal (~0.2) |
3.52 kg / 7.75 lbs
3516.0 g / 34.5 N
|
| 15 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 20 mm | Stal (~0.2) |
1.30 kg / 2.87 lbs
1302.0 g / 12.8 N
|
| 30 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 50 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 50x50x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.12 kg / 22.31 lbs
10119.0 g / 99.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.37 kg / 7.44 lbs
3373.0 g / 33.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
16.87 kg / 37.18 lbs
16865.0 g / 165.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 50x50x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.69 kg / 3.72 lbs
1686.5 g / 16.5 N
|
| 1 mm |
|
4.22 kg / 9.30 lbs
4216.3 g / 41.4 N
|
| 2 mm |
|
8.43 kg / 18.59 lbs
8432.5 g / 82.7 N
|
| 3 mm |
|
12.65 kg / 27.89 lbs
12648.8 g / 124.1 N
|
| 5 mm |
|
21.08 kg / 46.48 lbs
21081.2 g / 206.8 N
|
| 10 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 11 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 12 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 50x50x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
OK |
| 40 °C | -2.2% |
32.99 kg / 72.73 lbs
32987.9 g / 323.6 N
|
OK |
| 60 °C | -4.4% |
32.25 kg / 71.09 lbs
32245.9 g / 316.3 N
|
|
| 80 °C | -6.6% |
31.50 kg / 69.45 lbs
31503.8 g / 309.1 N
|
|
| 100 °C | -28.8% |
24.02 kg / 52.95 lbs
24015.8 g / 235.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 50x50x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
67.80 kg / 149.46 lbs
3 611 Gs
|
10.17 kg / 22.42 lbs
10169 g / 99.8 N
|
N/A |
| 1 mm |
66.54 kg / 146.70 lbs
4 156 Gs
|
9.98 kg / 22.01 lbs
9982 g / 97.9 N
|
59.89 kg / 132.03 lbs
~0 Gs
|
| 2 mm |
65.18 kg / 143.70 lbs
4 113 Gs
|
9.78 kg / 21.56 lbs
9777 g / 95.9 N
|
58.66 kg / 129.33 lbs
~0 Gs
|
| 3 mm |
63.74 kg / 140.53 lbs
4 067 Gs
|
9.56 kg / 21.08 lbs
9562 g / 93.8 N
|
57.37 kg / 126.48 lbs
~0 Gs
|
| 5 mm |
60.67 kg / 133.75 lbs
3 968 Gs
|
9.10 kg / 20.06 lbs
9101 g / 89.3 N
|
54.60 kg / 120.38 lbs
~0 Gs
|
| 10 mm |
52.24 kg / 115.18 lbs
3 682 Gs
|
7.84 kg / 17.28 lbs
7836 g / 76.9 N
|
47.02 kg / 103.66 lbs
~0 Gs
|
| 20 mm |
35.33 kg / 77.89 lbs
3 028 Gs
|
5.30 kg / 11.68 lbs
5299 g / 52.0 N
|
31.80 kg / 70.10 lbs
~0 Gs
|
| 50 mm |
7.69 kg / 16.96 lbs
1 413 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
| 60 mm |
4.54 kg / 10.01 lbs
1 086 Gs
|
0.68 kg / 1.50 lbs
681 g / 6.7 N
|
4.09 kg / 9.01 lbs
~0 Gs
|
| 70 mm |
2.72 kg / 6.01 lbs
841 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
2.45 kg / 5.41 lbs
~0 Gs
|
| 80 mm |
1.67 kg / 3.68 lbs
658 Gs
|
0.25 kg / 0.55 lbs
250 g / 2.5 N
|
1.50 kg / 3.31 lbs
~0 Gs
|
| 90 mm |
1.05 kg / 2.31 lbs
521 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 100 mm |
0.67 kg / 1.48 lbs
417 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.60 kg / 1.33 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 50x50x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 21.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 13.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x50x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.38 km/h
(4.83 m/s)
|
2.19 J | |
| 30 mm |
24.39 km/h
(6.78 m/s)
|
4.30 J | |
| 50 mm |
30.43 km/h
(8.45 m/s)
|
6.70 J | |
| 100 mm |
42.78 km/h
(11.88 m/s)
|
13.24 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x50x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x50x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 61 501 Mx | 615.0 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 50x50x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 33.73 kg | Standard |
| Woda (dno rzeki) |
38.62 kg
(+4.89 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- z płaszczyzną wolną od rys
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Niszczenie danych
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Tylko dla dorosłych
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Zakaz obróbki
Pył generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ostrzeżenie dla alergików
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
