MW 7x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010099
GTIN/EAN: 5906301810988
Średnica Ø
7 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.99 kg / 9.76 N
Indukcja magnetyczna
307.23 mT / 3072 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz zgłoszeniowy
na naszej stronie.
Moc oraz wygląd elementów magnetycznych sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 7x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 7x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010099 |
| GTIN/EAN | 5906301810988 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 7 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.99 kg / 9.76 N |
| Indukcja magnetyczna ~ ? | 307.23 mT / 3072 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze informacje stanowią rezultat symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 7x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3070 Gs
307.0 mT
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
bezpieczny |
| 1 mm |
2332 Gs
233.2 mT
|
0.57 kg / 1.26 lbs
571.1 g / 5.6 N
|
bezpieczny |
| 2 mm |
1590 Gs
159.0 mT
|
0.27 kg / 0.59 lbs
265.5 g / 2.6 N
|
bezpieczny |
| 3 mm |
1044 Gs
104.4 mT
|
0.11 kg / 0.25 lbs
114.6 g / 1.1 N
|
bezpieczny |
| 5 mm |
466 Gs
46.6 mT
|
0.02 kg / 0.05 lbs
22.8 g / 0.2 N
|
bezpieczny |
| 10 mm |
100 Gs
10.0 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
bezpieczny |
| 15 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 20 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 7x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 7x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.30 kg / 0.65 lbs
297.0 g / 2.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.20 kg / 0.44 lbs
198.0 g / 1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.50 kg / 1.09 lbs
495.0 g / 4.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 7x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.22 lbs
99.0 g / 1.0 N
|
| 1 mm |
|
0.25 kg / 0.55 lbs
247.5 g / 2.4 N
|
| 2 mm |
|
0.50 kg / 1.09 lbs
495.0 g / 4.9 N
|
| 3 mm |
|
0.74 kg / 1.64 lbs
742.5 g / 7.3 N
|
| 5 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 10 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 11 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
| 12 mm |
|
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 7x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.99 kg / 2.18 lbs
990.0 g / 9.7 N
|
OK |
| 40 °C | -2.2% |
0.97 kg / 2.13 lbs
968.2 g / 9.5 N
|
OK |
| 60 °C | -4.4% |
0.95 kg / 2.09 lbs
946.4 g / 9.3 N
|
|
| 80 °C | -6.6% |
0.92 kg / 2.04 lbs
924.7 g / 9.1 N
|
|
| 100 °C | -28.8% |
0.70 kg / 1.55 lbs
704.9 g / 6.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 7x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.24 kg / 4.93 lbs
4 653 Gs
|
0.34 kg / 0.74 lbs
335 g / 3.3 N
|
N/A |
| 1 mm |
1.76 kg / 3.89 lbs
5 454 Gs
|
0.26 kg / 0.58 lbs
265 g / 2.6 N
|
1.59 kg / 3.50 lbs
~0 Gs
|
| 2 mm |
1.29 kg / 2.84 lbs
4 663 Gs
|
0.19 kg / 0.43 lbs
193 g / 1.9 N
|
1.16 kg / 2.56 lbs
~0 Gs
|
| 3 mm |
0.89 kg / 1.97 lbs
3 884 Gs
|
0.13 kg / 0.30 lbs
134 g / 1.3 N
|
0.81 kg / 1.77 lbs
~0 Gs
|
| 5 mm |
0.40 kg / 0.87 lbs
2 581 Gs
|
0.06 kg / 0.13 lbs
59 g / 0.6 N
|
0.36 kg / 0.78 lbs
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 lbs
932 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
200 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 7x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 7x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
41.69 km/h
(11.58 m/s)
|
0.04 J | |
| 30 mm |
72.17 km/h
(20.05 m/s)
|
0.12 J | |
| 50 mm |
93.17 km/h
(25.88 m/s)
|
0.19 J | |
| 100 mm |
131.76 km/h
(36.60 m/s)
|
0.39 J |
Tabela 9: Odporność na korozję
MW 7x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 7x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 284 Mx | 12.8 µWb |
| Współczynnik Pc | 0.39 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 7x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.99 kg | Standard |
| Woda (dno rzeki) |
1.13 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.39
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- z zastosowaniem blachy ze miękkiej stali, która służy jako element zamykający obwód
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Kompas i GPS
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
To nie jest zabawka
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Nośniki danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Ryzyko uczulenia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Moc przyciągania
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
