MW 80x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010100
GTIN/EAN: 5906301810995
Średnica Ø
80 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1130.97 g
Kierunek magnesowania
↑ osiowy
Udźwig
170.64 kg / 1673.99 N
Indukcja magnetyczna
371.95 mT / 3720 Gs
Powłoka
[NiCuNi] nikiel
415.00 ZŁ z VAT / szt. + cena za transport
337.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie pisz korzystając z
nasz formularz online
przez naszą stronę.
Masę i formę elementów magnetycznych skontrolujesz u nas w
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 80x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 80x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010100 |
| GTIN/EAN | 5906301810995 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 80 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1130.97 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 170.64 kg / 1673.99 N |
| Indukcja magnetyczna ~ ? | 371.95 mT / 3720 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze informacje stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 80x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3719 Gs
371.9 mT
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
miażdżący |
| 1 mm |
3643 Gs
364.3 mT
|
163.71 kg / 360.93 lbs
163714.9 g / 1606.0 N
|
miażdżący |
| 2 mm |
3563 Gs
356.3 mT
|
156.65 kg / 345.35 lbs
156647.8 g / 1536.7 N
|
miażdżący |
| 3 mm |
3482 Gs
348.2 mT
|
149.55 kg / 329.71 lbs
149554.1 g / 1467.1 N
|
miażdżący |
| 5 mm |
3314 Gs
331.4 mT
|
135.46 kg / 298.63 lbs
135457.0 g / 1328.8 N
|
miażdżący |
| 10 mm |
2880 Gs
288.0 mT
|
102.34 kg / 225.63 lbs
102343.3 g / 1004.0 N
|
miażdżący |
| 15 mm |
2457 Gs
245.7 mT
|
74.47 kg / 164.17 lbs
74468.4 g / 730.5 N
|
miażdżący |
| 20 mm |
2069 Gs
206.9 mT
|
52.79 kg / 116.38 lbs
52789.9 g / 517.9 N
|
miażdżący |
| 30 mm |
1439 Gs
143.9 mT
|
25.53 kg / 56.29 lbs
25534.0 g / 250.5 N
|
miażdżący |
| 50 mm |
704 Gs
70.4 mT
|
6.11 kg / 13.48 lbs
6115.0 g / 60.0 N
|
mocny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 80x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| 1 mm | Stal (~0.2) |
32.74 kg / 72.18 lbs
32742.0 g / 321.2 N
|
| 2 mm | Stal (~0.2) |
31.33 kg / 69.07 lbs
31330.0 g / 307.3 N
|
| 3 mm | Stal (~0.2) |
29.91 kg / 65.94 lbs
29910.0 g / 293.4 N
|
| 5 mm | Stal (~0.2) |
27.09 kg / 59.73 lbs
27092.0 g / 265.8 N
|
| 10 mm | Stal (~0.2) |
20.47 kg / 45.12 lbs
20468.0 g / 200.8 N
|
| 15 mm | Stal (~0.2) |
14.89 kg / 32.84 lbs
14894.0 g / 146.1 N
|
| 20 mm | Stal (~0.2) |
10.56 kg / 23.28 lbs
10558.0 g / 103.6 N
|
| 30 mm | Stal (~0.2) |
5.11 kg / 11.26 lbs
5106.0 g / 50.1 N
|
| 50 mm | Stal (~0.2) |
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 80x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
51.19 kg / 112.86 lbs
51192.0 g / 502.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
17.06 kg / 37.62 lbs
17064.0 g / 167.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
85.32 kg / 188.10 lbs
85320.0 g / 837.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 80x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.69 kg / 12.54 lbs
5688.0 g / 55.8 N
|
| 1 mm |
|
14.22 kg / 31.35 lbs
14220.0 g / 139.5 N
|
| 2 mm |
|
28.44 kg / 62.70 lbs
28440.0 g / 279.0 N
|
| 3 mm |
|
42.66 kg / 94.05 lbs
42660.0 g / 418.5 N
|
| 5 mm |
|
71.10 kg / 156.75 lbs
71100.0 g / 697.5 N
|
| 10 mm |
|
142.20 kg / 313.50 lbs
142200.0 g / 1395.0 N
|
| 11 mm |
|
156.42 kg / 344.85 lbs
156420.0 g / 1534.5 N
|
| 12 mm |
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 80x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
OK |
| 40 °C | -2.2% |
166.89 kg / 367.92 lbs
166885.9 g / 1637.2 N
|
OK |
| 60 °C | -4.4% |
163.13 kg / 359.64 lbs
163131.8 g / 1600.3 N
|
|
| 80 °C | -6.6% |
159.38 kg / 351.37 lbs
159377.8 g / 1563.5 N
|
|
| 100 °C | -28.8% |
121.50 kg / 267.85 lbs
121495.7 g / 1191.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 80x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
428.66 kg / 945.03 lbs
5 157 Gs
|
64.30 kg / 141.76 lbs
64299 g / 630.8 N
|
N/A |
| 1 mm |
420.08 kg / 926.12 lbs
7 364 Gs
|
63.01 kg / 138.92 lbs
63012 g / 618.1 N
|
378.07 kg / 833.51 lbs
~0 Gs
|
| 2 mm |
411.26 kg / 906.68 lbs
7 286 Gs
|
61.69 kg / 136.00 lbs
61690 g / 605.2 N
|
370.14 kg / 816.01 lbs
~0 Gs
|
| 3 mm |
402.40 kg / 887.15 lbs
7 207 Gs
|
60.36 kg / 133.07 lbs
60360 g / 592.1 N
|
362.16 kg / 798.43 lbs
~0 Gs
|
| 5 mm |
384.60 kg / 847.90 lbs
7 046 Gs
|
57.69 kg / 127.19 lbs
57690 g / 565.9 N
|
346.14 kg / 763.11 lbs
~0 Gs
|
| 10 mm |
340.28 kg / 750.18 lbs
6 627 Gs
|
51.04 kg / 112.53 lbs
51042 g / 500.7 N
|
306.25 kg / 675.17 lbs
~0 Gs
|
| 20 mm |
257.09 kg / 566.80 lbs
5 761 Gs
|
38.56 kg / 85.02 lbs
38564 g / 378.3 N
|
231.38 kg / 510.12 lbs
~0 Gs
|
| 50 mm |
92.55 kg / 204.04 lbs
3 456 Gs
|
13.88 kg / 30.61 lbs
13883 g / 136.2 N
|
83.30 kg / 183.63 lbs
~0 Gs
|
| 60 mm |
64.14 kg / 141.41 lbs
2 877 Gs
|
9.62 kg / 21.21 lbs
9622 g / 94.4 N
|
57.73 kg / 127.27 lbs
~0 Gs
|
| 70 mm |
44.44 kg / 97.98 lbs
2 395 Gs
|
6.67 kg / 14.70 lbs
6666 g / 65.4 N
|
40.00 kg / 88.18 lbs
~0 Gs
|
| 80 mm |
30.93 kg / 68.19 lbs
1 998 Gs
|
4.64 kg / 10.23 lbs
4639 g / 45.5 N
|
27.84 kg / 61.37 lbs
~0 Gs
|
| 90 mm |
21.69 kg / 47.82 lbs
1 673 Gs
|
3.25 kg / 7.17 lbs
3254 g / 31.9 N
|
19.52 kg / 43.04 lbs
~0 Gs
|
| 100 mm |
15.36 kg / 33.87 lbs
1 408 Gs
|
2.30 kg / 5.08 lbs
2304 g / 22.6 N
|
13.83 kg / 30.48 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 80x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 80x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.39 km/h
(4.55 m/s)
|
11.72 J | |
| 30 mm |
23.38 km/h
(6.49 m/s)
|
23.85 J | |
| 50 mm |
28.31 km/h
(7.86 m/s)
|
34.98 J | |
| 100 mm |
39.22 km/h
(10.90 m/s)
|
67.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 80x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 80x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 194 600 Mx | 1946.0 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 80x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 170.64 kg | Standard |
| Woda (dno rzeki) |
195.38 kg
(+24.74 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny to min. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować działanie implantu.
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Rozprysk materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Temperatura pracy
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem niepowołanych osób.
Alergia na nikiel
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ostrożność wymagana
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
