MW 80x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010100
GTIN/EAN: 5906301810995
Średnica Ø
80 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1130.97 g
Kierunek magnesowania
↑ osiowy
Udźwig
170.64 kg / 1673.99 N
Indukcja magnetyczna
371.95 mT / 3720 Gs
Powłoka
[NiCuNi] nikiel
415.00 ZŁ z VAT / szt. + cena za transport
337.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Siłę a także wygląd elementów magnetycznych zobaczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry produktu - MW 80x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 80x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010100 |
| GTIN/EAN | 5906301810995 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 80 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1130.97 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 170.64 kg / 1673.99 N |
| Indukcja magnetyczna ~ ? | 371.95 mT / 3720 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione wartości są wynik kalkulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 80x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3719 Gs
371.9 mT
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
krytyczny poziom |
| 1 mm |
3643 Gs
364.3 mT
|
163.71 kg / 360.93 lbs
163714.9 g / 1606.0 N
|
krytyczny poziom |
| 2 mm |
3563 Gs
356.3 mT
|
156.65 kg / 345.35 lbs
156647.8 g / 1536.7 N
|
krytyczny poziom |
| 3 mm |
3482 Gs
348.2 mT
|
149.55 kg / 329.71 lbs
149554.1 g / 1467.1 N
|
krytyczny poziom |
| 5 mm |
3314 Gs
331.4 mT
|
135.46 kg / 298.63 lbs
135457.0 g / 1328.8 N
|
krytyczny poziom |
| 10 mm |
2880 Gs
288.0 mT
|
102.34 kg / 225.63 lbs
102343.3 g / 1004.0 N
|
krytyczny poziom |
| 15 mm |
2457 Gs
245.7 mT
|
74.47 kg / 164.17 lbs
74468.4 g / 730.5 N
|
krytyczny poziom |
| 20 mm |
2069 Gs
206.9 mT
|
52.79 kg / 116.38 lbs
52789.9 g / 517.9 N
|
krytyczny poziom |
| 30 mm |
1439 Gs
143.9 mT
|
25.53 kg / 56.29 lbs
25534.0 g / 250.5 N
|
krytyczny poziom |
| 50 mm |
704 Gs
70.4 mT
|
6.11 kg / 13.48 lbs
6115.0 g / 60.0 N
|
mocny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 80x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| 1 mm | Stal (~0.2) |
32.74 kg / 72.18 lbs
32742.0 g / 321.2 N
|
| 2 mm | Stal (~0.2) |
31.33 kg / 69.07 lbs
31330.0 g / 307.3 N
|
| 3 mm | Stal (~0.2) |
29.91 kg / 65.94 lbs
29910.0 g / 293.4 N
|
| 5 mm | Stal (~0.2) |
27.09 kg / 59.73 lbs
27092.0 g / 265.8 N
|
| 10 mm | Stal (~0.2) |
20.47 kg / 45.12 lbs
20468.0 g / 200.8 N
|
| 15 mm | Stal (~0.2) |
14.89 kg / 32.84 lbs
14894.0 g / 146.1 N
|
| 20 mm | Stal (~0.2) |
10.56 kg / 23.28 lbs
10558.0 g / 103.6 N
|
| 30 mm | Stal (~0.2) |
5.11 kg / 11.26 lbs
5106.0 g / 50.1 N
|
| 50 mm | Stal (~0.2) |
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 80x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
51.19 kg / 112.86 lbs
51192.0 g / 502.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
17.06 kg / 37.62 lbs
17064.0 g / 167.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
85.32 kg / 188.10 lbs
85320.0 g / 837.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 80x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.69 kg / 12.54 lbs
5688.0 g / 55.8 N
|
| 1 mm |
|
14.22 kg / 31.35 lbs
14220.0 g / 139.5 N
|
| 2 mm |
|
28.44 kg / 62.70 lbs
28440.0 g / 279.0 N
|
| 3 mm |
|
42.66 kg / 94.05 lbs
42660.0 g / 418.5 N
|
| 5 mm |
|
71.10 kg / 156.75 lbs
71100.0 g / 697.5 N
|
| 10 mm |
|
142.20 kg / 313.50 lbs
142200.0 g / 1395.0 N
|
| 11 mm |
|
156.42 kg / 344.85 lbs
156420.0 g / 1534.5 N
|
| 12 mm |
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 80x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
OK |
| 40 °C | -2.2% |
166.89 kg / 367.92 lbs
166885.9 g / 1637.2 N
|
OK |
| 60 °C | -4.4% |
163.13 kg / 359.64 lbs
163131.8 g / 1600.3 N
|
|
| 80 °C | -6.6% |
159.38 kg / 351.37 lbs
159377.8 g / 1563.5 N
|
|
| 100 °C | -28.8% |
121.50 kg / 267.85 lbs
121495.7 g / 1191.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 80x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
428.66 kg / 945.03 lbs
5 157 Gs
|
64.30 kg / 141.76 lbs
64299 g / 630.8 N
|
N/A |
| 1 mm |
420.08 kg / 926.12 lbs
7 364 Gs
|
63.01 kg / 138.92 lbs
63012 g / 618.1 N
|
378.07 kg / 833.51 lbs
~0 Gs
|
| 2 mm |
411.26 kg / 906.68 lbs
7 286 Gs
|
61.69 kg / 136.00 lbs
61690 g / 605.2 N
|
370.14 kg / 816.01 lbs
~0 Gs
|
| 3 mm |
402.40 kg / 887.15 lbs
7 207 Gs
|
60.36 kg / 133.07 lbs
60360 g / 592.1 N
|
362.16 kg / 798.43 lbs
~0 Gs
|
| 5 mm |
384.60 kg / 847.90 lbs
7 046 Gs
|
57.69 kg / 127.19 lbs
57690 g / 565.9 N
|
346.14 kg / 763.11 lbs
~0 Gs
|
| 10 mm |
340.28 kg / 750.18 lbs
6 627 Gs
|
51.04 kg / 112.53 lbs
51042 g / 500.7 N
|
306.25 kg / 675.17 lbs
~0 Gs
|
| 20 mm |
257.09 kg / 566.80 lbs
5 761 Gs
|
38.56 kg / 85.02 lbs
38564 g / 378.3 N
|
231.38 kg / 510.12 lbs
~0 Gs
|
| 50 mm |
92.55 kg / 204.04 lbs
3 456 Gs
|
13.88 kg / 30.61 lbs
13883 g / 136.2 N
|
83.30 kg / 183.63 lbs
~0 Gs
|
| 60 mm |
64.14 kg / 141.41 lbs
2 877 Gs
|
9.62 kg / 21.21 lbs
9622 g / 94.4 N
|
57.73 kg / 127.27 lbs
~0 Gs
|
| 70 mm |
44.44 kg / 97.98 lbs
2 395 Gs
|
6.67 kg / 14.70 lbs
6666 g / 65.4 N
|
40.00 kg / 88.18 lbs
~0 Gs
|
| 80 mm |
30.93 kg / 68.19 lbs
1 998 Gs
|
4.64 kg / 10.23 lbs
4639 g / 45.5 N
|
27.84 kg / 61.37 lbs
~0 Gs
|
| 90 mm |
21.69 kg / 47.82 lbs
1 673 Gs
|
3.25 kg / 7.17 lbs
3254 g / 31.9 N
|
19.52 kg / 43.04 lbs
~0 Gs
|
| 100 mm |
15.36 kg / 33.87 lbs
1 408 Gs
|
2.30 kg / 5.08 lbs
2304 g / 22.6 N
|
13.83 kg / 30.48 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 80x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 80x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.39 km/h
(4.55 m/s)
|
11.72 J | |
| 30 mm |
23.38 km/h
(6.49 m/s)
|
23.85 J | |
| 50 mm |
28.31 km/h
(7.86 m/s)
|
34.98 J | |
| 100 mm |
39.22 km/h
(10.90 m/s)
|
67.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 80x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 80x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 194 600 Mx | 1946.0 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 80x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 170.64 kg | Standard |
| Woda (dno rzeki) |
195.38 kg
(+24.74 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi jedynie ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość to min. 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Dystans (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda blacha nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy przy magnesach neodymowych
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zasady obsługi
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Uszkodzenia ciała
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
