MW 80x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010100
GTIN/EAN: 5906301810995
Średnica Ø
80 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1130.97 g
Kierunek magnesowania
↑ osiowy
Udźwig
170.64 kg / 1673.99 N
Indukcja magnetyczna
371.95 mT / 3720 Gs
Powłoka
[NiCuNi] nikiel
415.00 ZŁ z VAT / szt. + cena za transport
337.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz kontaktowy
w sekcji kontakt.
Siłę a także kształt magnesów zweryfikujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MW 80x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 80x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010100 |
| GTIN/EAN | 5906301810995 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 80 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1130.97 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 170.64 kg / 1673.99 N |
| Indukcja magnetyczna ~ ? | 371.95 mT / 3720 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione informacje są wynik analizy fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 80x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3719 Gs
371.9 mT
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
niebezpieczny! |
| 1 mm |
3643 Gs
364.3 mT
|
163.71 kg / 360.93 lbs
163714.9 g / 1606.0 N
|
niebezpieczny! |
| 2 mm |
3563 Gs
356.3 mT
|
156.65 kg / 345.35 lbs
156647.8 g / 1536.7 N
|
niebezpieczny! |
| 3 mm |
3482 Gs
348.2 mT
|
149.55 kg / 329.71 lbs
149554.1 g / 1467.1 N
|
niebezpieczny! |
| 5 mm |
3314 Gs
331.4 mT
|
135.46 kg / 298.63 lbs
135457.0 g / 1328.8 N
|
niebezpieczny! |
| 10 mm |
2880 Gs
288.0 mT
|
102.34 kg / 225.63 lbs
102343.3 g / 1004.0 N
|
niebezpieczny! |
| 15 mm |
2457 Gs
245.7 mT
|
74.47 kg / 164.17 lbs
74468.4 g / 730.5 N
|
niebezpieczny! |
| 20 mm |
2069 Gs
206.9 mT
|
52.79 kg / 116.38 lbs
52789.9 g / 517.9 N
|
niebezpieczny! |
| 30 mm |
1439 Gs
143.9 mT
|
25.53 kg / 56.29 lbs
25534.0 g / 250.5 N
|
niebezpieczny! |
| 50 mm |
704 Gs
70.4 mT
|
6.11 kg / 13.48 lbs
6115.0 g / 60.0 N
|
uwaga |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 80x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| 1 mm | Stal (~0.2) |
32.74 kg / 72.18 lbs
32742.0 g / 321.2 N
|
| 2 mm | Stal (~0.2) |
31.33 kg / 69.07 lbs
31330.0 g / 307.3 N
|
| 3 mm | Stal (~0.2) |
29.91 kg / 65.94 lbs
29910.0 g / 293.4 N
|
| 5 mm | Stal (~0.2) |
27.09 kg / 59.73 lbs
27092.0 g / 265.8 N
|
| 10 mm | Stal (~0.2) |
20.47 kg / 45.12 lbs
20468.0 g / 200.8 N
|
| 15 mm | Stal (~0.2) |
14.89 kg / 32.84 lbs
14894.0 g / 146.1 N
|
| 20 mm | Stal (~0.2) |
10.56 kg / 23.28 lbs
10558.0 g / 103.6 N
|
| 30 mm | Stal (~0.2) |
5.11 kg / 11.26 lbs
5106.0 g / 50.1 N
|
| 50 mm | Stal (~0.2) |
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 80x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
51.19 kg / 112.86 lbs
51192.0 g / 502.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
17.06 kg / 37.62 lbs
17064.0 g / 167.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
85.32 kg / 188.10 lbs
85320.0 g / 837.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 80x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.69 kg / 12.54 lbs
5688.0 g / 55.8 N
|
| 1 mm |
|
14.22 kg / 31.35 lbs
14220.0 g / 139.5 N
|
| 2 mm |
|
28.44 kg / 62.70 lbs
28440.0 g / 279.0 N
|
| 3 mm |
|
42.66 kg / 94.05 lbs
42660.0 g / 418.5 N
|
| 5 mm |
|
71.10 kg / 156.75 lbs
71100.0 g / 697.5 N
|
| 10 mm |
|
142.20 kg / 313.50 lbs
142200.0 g / 1395.0 N
|
| 11 mm |
|
156.42 kg / 344.85 lbs
156420.0 g / 1534.5 N
|
| 12 mm |
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 80x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
OK |
| 40 °C | -2.2% |
166.89 kg / 367.92 lbs
166885.9 g / 1637.2 N
|
OK |
| 60 °C | -4.4% |
163.13 kg / 359.64 lbs
163131.8 g / 1600.3 N
|
|
| 80 °C | -6.6% |
159.38 kg / 351.37 lbs
159377.8 g / 1563.5 N
|
|
| 100 °C | -28.8% |
121.50 kg / 267.85 lbs
121495.7 g / 1191.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 80x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
428.66 kg / 945.03 lbs
5 157 Gs
|
64.30 kg / 141.76 lbs
64299 g / 630.8 N
|
N/A |
| 1 mm |
420.08 kg / 926.12 lbs
7 364 Gs
|
63.01 kg / 138.92 lbs
63012 g / 618.1 N
|
378.07 kg / 833.51 lbs
~0 Gs
|
| 2 mm |
411.26 kg / 906.68 lbs
7 286 Gs
|
61.69 kg / 136.00 lbs
61690 g / 605.2 N
|
370.14 kg / 816.01 lbs
~0 Gs
|
| 3 mm |
402.40 kg / 887.15 lbs
7 207 Gs
|
60.36 kg / 133.07 lbs
60360 g / 592.1 N
|
362.16 kg / 798.43 lbs
~0 Gs
|
| 5 mm |
384.60 kg / 847.90 lbs
7 046 Gs
|
57.69 kg / 127.19 lbs
57690 g / 565.9 N
|
346.14 kg / 763.11 lbs
~0 Gs
|
| 10 mm |
340.28 kg / 750.18 lbs
6 627 Gs
|
51.04 kg / 112.53 lbs
51042 g / 500.7 N
|
306.25 kg / 675.17 lbs
~0 Gs
|
| 20 mm |
257.09 kg / 566.80 lbs
5 761 Gs
|
38.56 kg / 85.02 lbs
38564 g / 378.3 N
|
231.38 kg / 510.12 lbs
~0 Gs
|
| 50 mm |
92.55 kg / 204.04 lbs
3 456 Gs
|
13.88 kg / 30.61 lbs
13883 g / 136.2 N
|
83.30 kg / 183.63 lbs
~0 Gs
|
| 60 mm |
64.14 kg / 141.41 lbs
2 877 Gs
|
9.62 kg / 21.21 lbs
9622 g / 94.4 N
|
57.73 kg / 127.27 lbs
~0 Gs
|
| 70 mm |
44.44 kg / 97.98 lbs
2 395 Gs
|
6.67 kg / 14.70 lbs
6666 g / 65.4 N
|
40.00 kg / 88.18 lbs
~0 Gs
|
| 80 mm |
30.93 kg / 68.19 lbs
1 998 Gs
|
4.64 kg / 10.23 lbs
4639 g / 45.5 N
|
27.84 kg / 61.37 lbs
~0 Gs
|
| 90 mm |
21.69 kg / 47.82 lbs
1 673 Gs
|
3.25 kg / 7.17 lbs
3254 g / 31.9 N
|
19.52 kg / 43.04 lbs
~0 Gs
|
| 100 mm |
15.36 kg / 33.87 lbs
1 408 Gs
|
2.30 kg / 5.08 lbs
2304 g / 22.6 N
|
13.83 kg / 30.48 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 80x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 80x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.39 km/h
(4.55 m/s)
|
11.72 J | |
| 30 mm |
23.38 km/h
(6.49 m/s)
|
23.85 J | |
| 50 mm |
28.31 km/h
(7.86 m/s)
|
34.98 J | |
| 100 mm |
39.22 km/h
(10.90 m/s)
|
67.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 80x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 80x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 194 600 Mx | 1946.0 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 80x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 170.64 kg | Standard |
| Woda (dno rzeki) |
195.38 kg
(+24.74 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z użyciem płyty ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak farby)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Ostrzeżenia
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Trzymaj z dala od elektroniki
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Nie lekceważ mocy
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Niklowa powłoka a alergia
Pewna grupa użytkowników ma alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Ryzyko rozmagnesowania
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
