MW 80x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010100
GTIN/EAN: 5906301810995
Średnica Ø
80 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1130.97 g
Kierunek magnesowania
↑ osiowy
Udźwig
170.64 kg / 1673.99 N
Indukcja magnetyczna
371.95 mT / 3720 Gs
Powłoka
[NiCuNi] nikiel
415.00 ZŁ z VAT / szt. + cena za transport
337.40 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie pisz za pomocą
formularz zapytania
na naszej stronie.
Udźwig oraz kształt magnesów neodymowych zobaczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 80x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 80x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010100 |
| GTIN/EAN | 5906301810995 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 80 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1130.97 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 170.64 kg / 1673.99 N |
| Indukcja magnetyczna ~ ? | 371.95 mT / 3720 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Przedstawione wartości stanowią wynik kalkulacji inżynierskiej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 80x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3719 Gs
371.9 mT
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
niebezpieczny! |
| 1 mm |
3643 Gs
364.3 mT
|
163.71 kg / 360.93 lbs
163714.9 g / 1606.0 N
|
niebezpieczny! |
| 2 mm |
3563 Gs
356.3 mT
|
156.65 kg / 345.35 lbs
156647.8 g / 1536.7 N
|
niebezpieczny! |
| 3 mm |
3482 Gs
348.2 mT
|
149.55 kg / 329.71 lbs
149554.1 g / 1467.1 N
|
niebezpieczny! |
| 5 mm |
3314 Gs
331.4 mT
|
135.46 kg / 298.63 lbs
135457.0 g / 1328.8 N
|
niebezpieczny! |
| 10 mm |
2880 Gs
288.0 mT
|
102.34 kg / 225.63 lbs
102343.3 g / 1004.0 N
|
niebezpieczny! |
| 15 mm |
2457 Gs
245.7 mT
|
74.47 kg / 164.17 lbs
74468.4 g / 730.5 N
|
niebezpieczny! |
| 20 mm |
2069 Gs
206.9 mT
|
52.79 kg / 116.38 lbs
52789.9 g / 517.9 N
|
niebezpieczny! |
| 30 mm |
1439 Gs
143.9 mT
|
25.53 kg / 56.29 lbs
25534.0 g / 250.5 N
|
niebezpieczny! |
| 50 mm |
704 Gs
70.4 mT
|
6.11 kg / 13.48 lbs
6115.0 g / 60.0 N
|
uwaga |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 80x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| 1 mm | Stal (~0.2) |
32.74 kg / 72.18 lbs
32742.0 g / 321.2 N
|
| 2 mm | Stal (~0.2) |
31.33 kg / 69.07 lbs
31330.0 g / 307.3 N
|
| 3 mm | Stal (~0.2) |
29.91 kg / 65.94 lbs
29910.0 g / 293.4 N
|
| 5 mm | Stal (~0.2) |
27.09 kg / 59.73 lbs
27092.0 g / 265.8 N
|
| 10 mm | Stal (~0.2) |
20.47 kg / 45.12 lbs
20468.0 g / 200.8 N
|
| 15 mm | Stal (~0.2) |
14.89 kg / 32.84 lbs
14894.0 g / 146.1 N
|
| 20 mm | Stal (~0.2) |
10.56 kg / 23.28 lbs
10558.0 g / 103.6 N
|
| 30 mm | Stal (~0.2) |
5.11 kg / 11.26 lbs
5106.0 g / 50.1 N
|
| 50 mm | Stal (~0.2) |
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 80x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
51.19 kg / 112.86 lbs
51192.0 g / 502.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
34.13 kg / 75.24 lbs
34128.0 g / 334.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
17.06 kg / 37.62 lbs
17064.0 g / 167.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
85.32 kg / 188.10 lbs
85320.0 g / 837.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 80x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.69 kg / 12.54 lbs
5688.0 g / 55.8 N
|
| 1 mm |
|
14.22 kg / 31.35 lbs
14220.0 g / 139.5 N
|
| 2 mm |
|
28.44 kg / 62.70 lbs
28440.0 g / 279.0 N
|
| 3 mm |
|
42.66 kg / 94.05 lbs
42660.0 g / 418.5 N
|
| 5 mm |
|
71.10 kg / 156.75 lbs
71100.0 g / 697.5 N
|
| 10 mm |
|
142.20 kg / 313.50 lbs
142200.0 g / 1395.0 N
|
| 11 mm |
|
156.42 kg / 344.85 lbs
156420.0 g / 1534.5 N
|
| 12 mm |
|
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 80x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
170.64 kg / 376.20 lbs
170640.0 g / 1674.0 N
|
OK |
| 40 °C | -2.2% |
166.89 kg / 367.92 lbs
166885.9 g / 1637.2 N
|
OK |
| 60 °C | -4.4% |
163.13 kg / 359.64 lbs
163131.8 g / 1600.3 N
|
|
| 80 °C | -6.6% |
159.38 kg / 351.37 lbs
159377.8 g / 1563.5 N
|
|
| 100 °C | -28.8% |
121.50 kg / 267.85 lbs
121495.7 g / 1191.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 80x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
428.66 kg / 945.03 lbs
5 157 Gs
|
64.30 kg / 141.76 lbs
64299 g / 630.8 N
|
N/A |
| 1 mm |
420.08 kg / 926.12 lbs
7 364 Gs
|
63.01 kg / 138.92 lbs
63012 g / 618.1 N
|
378.07 kg / 833.51 lbs
~0 Gs
|
| 2 mm |
411.26 kg / 906.68 lbs
7 286 Gs
|
61.69 kg / 136.00 lbs
61690 g / 605.2 N
|
370.14 kg / 816.01 lbs
~0 Gs
|
| 3 mm |
402.40 kg / 887.15 lbs
7 207 Gs
|
60.36 kg / 133.07 lbs
60360 g / 592.1 N
|
362.16 kg / 798.43 lbs
~0 Gs
|
| 5 mm |
384.60 kg / 847.90 lbs
7 046 Gs
|
57.69 kg / 127.19 lbs
57690 g / 565.9 N
|
346.14 kg / 763.11 lbs
~0 Gs
|
| 10 mm |
340.28 kg / 750.18 lbs
6 627 Gs
|
51.04 kg / 112.53 lbs
51042 g / 500.7 N
|
306.25 kg / 675.17 lbs
~0 Gs
|
| 20 mm |
257.09 kg / 566.80 lbs
5 761 Gs
|
38.56 kg / 85.02 lbs
38564 g / 378.3 N
|
231.38 kg / 510.12 lbs
~0 Gs
|
| 50 mm |
92.55 kg / 204.04 lbs
3 456 Gs
|
13.88 kg / 30.61 lbs
13883 g / 136.2 N
|
83.30 kg / 183.63 lbs
~0 Gs
|
| 60 mm |
64.14 kg / 141.41 lbs
2 877 Gs
|
9.62 kg / 21.21 lbs
9622 g / 94.4 N
|
57.73 kg / 127.27 lbs
~0 Gs
|
| 70 mm |
44.44 kg / 97.98 lbs
2 395 Gs
|
6.67 kg / 14.70 lbs
6666 g / 65.4 N
|
40.00 kg / 88.18 lbs
~0 Gs
|
| 80 mm |
30.93 kg / 68.19 lbs
1 998 Gs
|
4.64 kg / 10.23 lbs
4639 g / 45.5 N
|
27.84 kg / 61.37 lbs
~0 Gs
|
| 90 mm |
21.69 kg / 47.82 lbs
1 673 Gs
|
3.25 kg / 7.17 lbs
3254 g / 31.9 N
|
19.52 kg / 43.04 lbs
~0 Gs
|
| 100 mm |
15.36 kg / 33.87 lbs
1 408 Gs
|
2.30 kg / 5.08 lbs
2304 g / 22.6 N
|
13.83 kg / 30.48 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 80x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 80x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.39 km/h
(4.55 m/s)
|
11.72 J | |
| 30 mm |
23.38 km/h
(6.49 m/s)
|
23.85 J | |
| 50 mm |
28.31 km/h
(7.86 m/s)
|
34.98 J | |
| 100 mm |
39.22 km/h
(10.90 m/s)
|
67.13 J |
Tabela 9: Parametry powłoki (trwałość)
MW 80x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 80x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 194 600 Mx | 1946.0 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 80x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 170.64 kg | Standard |
| Woda (dno rzeki) |
195.38 kg
(+24.74 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni styku
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Potężne pole
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Utrata mocy w cieple
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Produkt nie dla dzieci
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Kruchy spiek
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
