MW 70x60 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010098
GTIN/EAN: 5906301810971
Średnica Ø
70 mm [±0,1 mm]
Wysokość
60 mm [±0,1 mm]
Waga
1731.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
163.93 kg / 1608.16 N
Indukcja magnetyczna
535.45 mT / 5354 Gs
Powłoka
[NiCuNi] nikiel
630.01 ZŁ z VAT / szt. + cena za transport
512.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Dzwoń do nas
+48 888 99 98 98
albo daj znać korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Masę a także formę elementów magnetycznych zobaczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
MW 70x60 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 70x60 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010098 |
| GTIN/EAN | 5906301810971 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 60 mm [±0,1 mm] |
| Waga | 1731.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 163.93 kg / 1608.16 N |
| Indukcja magnetyczna ~ ? | 535.45 mT / 5354 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - raport
Poniższe wartości stanowią wynik kalkulacji fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 70x60 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5354 Gs
535.4 mT
|
163.93 kg / 163930.0 g
1608.2 N
|
niebezpieczny! |
| 1 mm |
5201 Gs
520.1 mT
|
154.68 kg / 154677.8 g
1517.4 N
|
niebezpieczny! |
| 2 mm |
5045 Gs
504.5 mT
|
145.58 kg / 145583.5 g
1428.2 N
|
niebezpieczny! |
| 3 mm |
4890 Gs
489.0 mT
|
136.77 kg / 136769.5 g
1341.7 N
|
niebezpieczny! |
| 5 mm |
4582 Gs
458.2 mT
|
120.07 kg / 120074.6 g
1177.9 N
|
niebezpieczny! |
| 10 mm |
3842 Gs
384.2 mT
|
84.43 kg / 84425.8 g
828.2 N
|
niebezpieczny! |
| 15 mm |
3176 Gs
317.6 mT
|
57.69 kg / 57688.8 g
565.9 N
|
niebezpieczny! |
| 20 mm |
2604 Gs
260.4 mT
|
38.78 kg / 38782.9 g
380.5 N
|
niebezpieczny! |
| 30 mm |
1744 Gs
174.4 mT
|
17.39 kg / 17385.0 g
170.5 N
|
niebezpieczny! |
| 50 mm |
829 Gs
82.9 mT
|
3.93 kg / 3929.4 g
38.5 N
|
średnie ryzyko |
MW 70x60 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.79 kg / 32786.0 g
321.6 N
|
| 1 mm | Stal (~0.2) |
30.94 kg / 30936.0 g
303.5 N
|
| 2 mm | Stal (~0.2) |
29.12 kg / 29116.0 g
285.6 N
|
| 3 mm | Stal (~0.2) |
27.35 kg / 27354.0 g
268.3 N
|
| 5 mm | Stal (~0.2) |
24.01 kg / 24014.0 g
235.6 N
|
| 10 mm | Stal (~0.2) |
16.89 kg / 16886.0 g
165.7 N
|
| 15 mm | Stal (~0.2) |
11.54 kg / 11538.0 g
113.2 N
|
| 20 mm | Stal (~0.2) |
7.76 kg / 7756.0 g
76.1 N
|
| 30 mm | Stal (~0.2) |
3.48 kg / 3478.0 g
34.1 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 786.0 g
7.7 N
|
MW 70x60 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.18 kg / 49179.0 g
482.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.79 kg / 32786.0 g
321.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.39 kg / 16393.0 g
160.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
81.97 kg / 81965.0 g
804.1 N
|
MW 70x60 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
5.46 kg / 5464.3 g
53.6 N
|
| 1 mm |
|
13.66 kg / 13660.8 g
134.0 N
|
| 2 mm |
|
27.32 kg / 27321.7 g
268.0 N
|
| 5 mm |
|
68.30 kg / 68304.2 g
670.1 N
|
| 10 mm |
|
136.61 kg / 136608.3 g
1340.1 N
|
MW 70x60 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
163.93 kg / 163930.0 g
1608.2 N
|
OK |
| 40 °C | -2.2% |
160.32 kg / 160323.5 g
1572.8 N
|
OK |
| 60 °C | -4.4% |
156.72 kg / 156717.1 g
1537.4 N
|
OK |
| 80 °C | -6.6% |
153.11 kg / 153110.6 g
1502.0 N
|
|
| 100 °C | -28.8% |
116.72 kg / 116718.2 g
1145.0 N
|
MW 70x60 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
680.08 kg / 680078 g
6671.6 N
5 950 Gs
|
N/A |
| 1 mm |
660.96 kg / 660959 g
6484.0 N
10 556 Gs
|
594.86 kg / 594863 g
5835.6 N
~0 Gs
|
| 2 mm |
641.69 kg / 641694 g
6295.0 N
10 401 Gs
|
577.52 kg / 577525 g
5665.5 N
~0 Gs
|
| 3 mm |
622.69 kg / 622691 g
6108.6 N
10 246 Gs
|
560.42 kg / 560422 g
5497.7 N
~0 Gs
|
| 5 mm |
585.53 kg / 585531 g
5744.1 N
9 936 Gs
|
526.98 kg / 526978 g
5169.7 N
~0 Gs
|
| 10 mm |
498.14 kg / 498140 g
4886.8 N
9 164 Gs
|
448.33 kg / 448326 g
4398.1 N
~0 Gs
|
| 20 mm |
350.25 kg / 350248 g
3435.9 N
7 684 Gs
|
315.22 kg / 315223 g
3092.3 N
~0 Gs
|
| 50 mm |
107.57 kg / 107574 g
1055.3 N
4 259 Gs
|
96.82 kg / 96816 g
949.8 N
~0 Gs
|
MW 70x60 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 42.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 33.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 25.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 19.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 18.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
MW 70x60 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.58 km/h
(3.49 m/s)
|
10.57 J | |
| 30 mm |
18.09 km/h
(5.02 m/s)
|
21.86 J | |
| 50 mm |
22.27 km/h
(6.19 m/s)
|
33.13 J | |
| 100 mm |
31.06 km/h
(8.63 m/s)
|
64.44 J |
MW 70x60 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 70x60 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 209 626 Mx | 2096.3 µWb |
| Współczynnik Pc | 0.82 | Wysoki (Stabilny) |
MW 70x60 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 163.93 kg | Standard |
| Woda (dno rzeki) |
187.70 kg
(+23.77 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.82
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – obecność jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Niebezpieczeństwo przytrzaśnięcia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Karty i dyski
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Uwaga medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
