MW 70x60 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010098
GTIN/EAN: 5906301810971
Średnica Ø
70 mm [±0,1 mm]
Wysokość
60 mm [±0,1 mm]
Waga
1731.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
163.93 kg / 1608.16 N
Indukcja magnetyczna
535.45 mT / 5354 Gs
Powłoka
[NiCuNi] nikiel
630.01 ZŁ z VAT / szt. + cena za transport
512.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie daj znać przez
nasz formularz online
na naszej stronie.
Udźwig oraz formę magnesów testujesz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 70x60 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x60 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010098 |
| GTIN/EAN | 5906301810971 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 60 mm [±0,1 mm] |
| Waga | 1731.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 163.93 kg / 1608.16 N |
| Indukcja magnetyczna ~ ? | 535.45 mT / 5354 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione informacje są rezultat symulacji fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 70x60 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5354 Gs
535.4 mT
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
miażdżący |
| 1 mm |
5201 Gs
520.1 mT
|
154.68 kg / 341.01 lbs
154677.8 g / 1517.4 N
|
miażdżący |
| 2 mm |
5045 Gs
504.5 mT
|
145.58 kg / 320.96 lbs
145583.5 g / 1428.2 N
|
miażdżący |
| 3 mm |
4890 Gs
489.0 mT
|
136.77 kg / 301.52 lbs
136769.5 g / 1341.7 N
|
miażdżący |
| 5 mm |
4582 Gs
458.2 mT
|
120.07 kg / 264.72 lbs
120074.6 g / 1177.9 N
|
miażdżący |
| 10 mm |
3842 Gs
384.2 mT
|
84.43 kg / 186.13 lbs
84425.8 g / 828.2 N
|
miażdżący |
| 15 mm |
3176 Gs
317.6 mT
|
57.69 kg / 127.18 lbs
57688.8 g / 565.9 N
|
miażdżący |
| 20 mm |
2604 Gs
260.4 mT
|
38.78 kg / 85.50 lbs
38782.9 g / 380.5 N
|
miażdżący |
| 30 mm |
1744 Gs
174.4 mT
|
17.39 kg / 38.33 lbs
17385.0 g / 170.5 N
|
miażdżący |
| 50 mm |
829 Gs
82.9 mT
|
3.93 kg / 8.66 lbs
3929.4 g / 38.5 N
|
mocny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 70x60 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| 1 mm | Stal (~0.2) |
30.94 kg / 68.20 lbs
30936.0 g / 303.5 N
|
| 2 mm | Stal (~0.2) |
29.12 kg / 64.19 lbs
29116.0 g / 285.6 N
|
| 3 mm | Stal (~0.2) |
27.35 kg / 60.31 lbs
27354.0 g / 268.3 N
|
| 5 mm | Stal (~0.2) |
24.01 kg / 52.94 lbs
24014.0 g / 235.6 N
|
| 10 mm | Stal (~0.2) |
16.89 kg / 37.23 lbs
16886.0 g / 165.7 N
|
| 15 mm | Stal (~0.2) |
11.54 kg / 25.44 lbs
11538.0 g / 113.2 N
|
| 20 mm | Stal (~0.2) |
7.76 kg / 17.10 lbs
7756.0 g / 76.1 N
|
| 30 mm | Stal (~0.2) |
3.48 kg / 7.67 lbs
3478.0 g / 34.1 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 70x60 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.18 kg / 108.42 lbs
49179.0 g / 482.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.79 kg / 72.28 lbs
32786.0 g / 321.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.39 kg / 36.14 lbs
16393.0 g / 160.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
81.97 kg / 180.70 lbs
81965.0 g / 804.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 70x60 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.46 kg / 12.05 lbs
5464.3 g / 53.6 N
|
| 1 mm |
|
13.66 kg / 30.12 lbs
13660.8 g / 134.0 N
|
| 2 mm |
|
27.32 kg / 60.23 lbs
27321.7 g / 268.0 N
|
| 3 mm |
|
40.98 kg / 90.35 lbs
40982.5 g / 402.0 N
|
| 5 mm |
|
68.30 kg / 150.58 lbs
68304.2 g / 670.1 N
|
| 10 mm |
|
136.61 kg / 301.17 lbs
136608.3 g / 1340.1 N
|
| 11 mm |
|
150.27 kg / 331.29 lbs
150269.2 g / 1474.1 N
|
| 12 mm |
|
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 70x60 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
163.93 kg / 361.40 lbs
163930.0 g / 1608.2 N
|
OK |
| 40 °C | -2.2% |
160.32 kg / 353.45 lbs
160323.5 g / 1572.8 N
|
OK |
| 60 °C | -4.4% |
156.72 kg / 345.50 lbs
156717.1 g / 1537.4 N
|
OK |
| 80 °C | -6.6% |
153.11 kg / 337.55 lbs
153110.6 g / 1502.0 N
|
|
| 100 °C | -28.8% |
116.72 kg / 257.32 lbs
116718.2 g / 1145.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 70x60 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
680.08 kg / 1499.31 lbs
5 950 Gs
|
102.01 kg / 224.90 lbs
102012 g / 1000.7 N
|
N/A |
| 1 mm |
660.96 kg / 1457.16 lbs
10 556 Gs
|
99.14 kg / 218.57 lbs
99144 g / 972.6 N
|
594.86 kg / 1311.45 lbs
~0 Gs
|
| 2 mm |
641.69 kg / 1414.69 lbs
10 401 Gs
|
96.25 kg / 212.20 lbs
96254 g / 944.3 N
|
577.52 kg / 1273.22 lbs
~0 Gs
|
| 3 mm |
622.69 kg / 1372.80 lbs
10 246 Gs
|
93.40 kg / 205.92 lbs
93404 g / 916.3 N
|
560.42 kg / 1235.52 lbs
~0 Gs
|
| 5 mm |
585.53 kg / 1290.87 lbs
9 936 Gs
|
87.83 kg / 193.63 lbs
87830 g / 861.6 N
|
526.98 kg / 1161.79 lbs
~0 Gs
|
| 10 mm |
498.14 kg / 1098.21 lbs
9 164 Gs
|
74.72 kg / 164.73 lbs
74721 g / 733.0 N
|
448.33 kg / 988.39 lbs
~0 Gs
|
| 20 mm |
350.25 kg / 772.16 lbs
7 684 Gs
|
52.54 kg / 115.82 lbs
52537 g / 515.4 N
|
315.22 kg / 694.95 lbs
~0 Gs
|
| 50 mm |
107.57 kg / 237.16 lbs
4 259 Gs
|
16.14 kg / 35.57 lbs
16136 g / 158.3 N
|
96.82 kg / 213.44 lbs
~0 Gs
|
| 60 mm |
72.12 kg / 159.00 lbs
3 487 Gs
|
10.82 kg / 23.85 lbs
10818 g / 106.1 N
|
64.91 kg / 143.10 lbs
~0 Gs
|
| 70 mm |
48.77 kg / 107.51 lbs
2 867 Gs
|
7.31 kg / 16.13 lbs
7315 g / 71.8 N
|
43.89 kg / 96.76 lbs
~0 Gs
|
| 80 mm |
33.37 kg / 73.57 lbs
2 372 Gs
|
5.01 kg / 11.04 lbs
5005 g / 49.1 N
|
30.03 kg / 66.21 lbs
~0 Gs
|
| 90 mm |
23.15 kg / 51.04 lbs
1 976 Gs
|
3.47 kg / 7.66 lbs
3473 g / 34.1 N
|
20.84 kg / 45.94 lbs
~0 Gs
|
| 100 mm |
16.30 kg / 35.94 lbs
1 658 Gs
|
2.45 kg / 5.39 lbs
2445 g / 24.0 N
|
14.67 kg / 32.34 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 70x60 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 42.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 33.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 25.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 19.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 18.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 6.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 70x60 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.58 km/h
(3.49 m/s)
|
10.57 J | |
| 30 mm |
18.09 km/h
(5.02 m/s)
|
21.86 J | |
| 50 mm |
22.27 km/h
(6.19 m/s)
|
33.13 J | |
| 100 mm |
31.06 km/h
(8.63 m/s)
|
64.44 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 70x60 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 70x60 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 209 626 Mx | 2096.3 µWb |
| Współczynnik Pc | 0.82 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 70x60 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 163.93 kg | Standard |
| Woda (dno rzeki) |
187.70 kg
(+23.77 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.82
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Trwała utrata siły
Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Moc przyciągania
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
