MW 70x40 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010097
GTIN/EAN: 5906301810964
Średnica Ø
70 mm [±0,1 mm]
Wysokość
40 mm [±0,1 mm]
Waga
1154.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
164.24 kg / 1611.16 N
Indukcja magnetyczna
466.52 mT / 4665 Gs
Powłoka
[NiCuNi] nikiel
395.40 ZŁ z VAT / szt. + cena za transport
321.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość korzystając z
formularz zgłoszeniowy
przez naszą stronę.
Masę a także formę elementów magnetycznych obliczysz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry - MW 70x40 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 70x40 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010097 |
| GTIN/EAN | 5906301810964 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 70 mm [±0,1 mm] |
| Wysokość | 40 mm [±0,1 mm] |
| Waga | 1154.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 164.24 kg / 1611.16 N |
| Indukcja magnetyczna ~ ? | 466.52 mT / 4665 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 70x40 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4665 Gs
466.5 mT
|
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
miażdżący |
| 1 mm |
4538 Gs
453.8 mT
|
155.47 kg / 342.75 lbs
155467.9 g / 1525.1 N
|
miażdżący |
| 2 mm |
4409 Gs
440.9 mT
|
146.74 kg / 323.52 lbs
146744.5 g / 1439.6 N
|
miażdżący |
| 3 mm |
4279 Gs
427.9 mT
|
138.20 kg / 304.68 lbs
138201.8 g / 1355.8 N
|
miażdżący |
| 5 mm |
4017 Gs
401.7 mT
|
121.81 kg / 268.54 lbs
121806.5 g / 1194.9 N
|
miażdżący |
| 10 mm |
3376 Gs
337.6 mT
|
86.03 kg / 189.65 lbs
86025.3 g / 843.9 N
|
miażdżący |
| 15 mm |
2788 Gs
278.8 mT
|
58.69 kg / 129.38 lbs
58686.8 g / 575.7 N
|
miażdżący |
| 20 mm |
2279 Gs
227.9 mT
|
39.22 kg / 86.46 lbs
39215.6 g / 384.7 N
|
miażdżący |
| 30 mm |
1511 Gs
151.1 mT
|
17.22 kg / 37.97 lbs
17222.5 g / 169.0 N
|
miażdżący |
| 50 mm |
699 Gs
69.9 mT
|
3.69 kg / 8.13 lbs
3690.0 g / 36.2 N
|
średnie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 70x40 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
32.85 kg / 72.42 lbs
32848.0 g / 322.2 N
|
| 1 mm | Stal (~0.2) |
31.09 kg / 68.55 lbs
31094.0 g / 305.0 N
|
| 2 mm | Stal (~0.2) |
29.35 kg / 64.70 lbs
29348.0 g / 287.9 N
|
| 3 mm | Stal (~0.2) |
27.64 kg / 60.94 lbs
27640.0 g / 271.1 N
|
| 5 mm | Stal (~0.2) |
24.36 kg / 53.71 lbs
24362.0 g / 239.0 N
|
| 10 mm | Stal (~0.2) |
17.21 kg / 37.93 lbs
17206.0 g / 168.8 N
|
| 15 mm | Stal (~0.2) |
11.74 kg / 25.88 lbs
11738.0 g / 115.1 N
|
| 20 mm | Stal (~0.2) |
7.84 kg / 17.29 lbs
7844.0 g / 76.9 N
|
| 30 mm | Stal (~0.2) |
3.44 kg / 7.59 lbs
3444.0 g / 33.8 N
|
| 50 mm | Stal (~0.2) |
0.74 kg / 1.63 lbs
738.0 g / 7.2 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 70x40 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
49.27 kg / 108.63 lbs
49272.0 g / 483.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
32.85 kg / 72.42 lbs
32848.0 g / 322.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
16.42 kg / 36.21 lbs
16424.0 g / 161.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
82.12 kg / 181.04 lbs
82120.0 g / 805.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 70x40 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
5.47 kg / 12.07 lbs
5474.7 g / 53.7 N
|
| 1 mm |
|
13.69 kg / 30.17 lbs
13686.7 g / 134.3 N
|
| 2 mm |
|
27.37 kg / 60.35 lbs
27373.3 g / 268.5 N
|
| 3 mm |
|
41.06 kg / 90.52 lbs
41060.0 g / 402.8 N
|
| 5 mm |
|
68.43 kg / 150.87 lbs
68433.3 g / 671.3 N
|
| 10 mm |
|
136.87 kg / 301.74 lbs
136866.7 g / 1342.7 N
|
| 11 mm |
|
150.55 kg / 331.91 lbs
150553.3 g / 1476.9 N
|
| 12 mm |
|
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 70x40 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
164.24 kg / 362.09 lbs
164240.0 g / 1611.2 N
|
OK |
| 40 °C | -2.2% |
160.63 kg / 354.12 lbs
160626.7 g / 1575.7 N
|
OK |
| 60 °C | -4.4% |
157.01 kg / 346.15 lbs
157013.4 g / 1540.3 N
|
OK |
| 80 °C | -6.6% |
153.40 kg / 338.19 lbs
153400.2 g / 1504.9 N
|
|
| 100 °C | -28.8% |
116.94 kg / 257.81 lbs
116938.9 g / 1147.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 70x40 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
516.26 kg / 1138.16 lbs
5 679 Gs
|
77.44 kg / 170.72 lbs
77439 g / 759.7 N
|
N/A |
| 1 mm |
502.57 kg / 1107.98 lbs
9 205 Gs
|
75.39 kg / 166.20 lbs
75385 g / 739.5 N
|
452.31 kg / 997.18 lbs
~0 Gs
|
| 2 mm |
488.69 kg / 1077.37 lbs
9 077 Gs
|
73.30 kg / 161.61 lbs
73303 g / 719.1 N
|
439.82 kg / 969.63 lbs
~0 Gs
|
| 3 mm |
474.91 kg / 1047.01 lbs
8 948 Gs
|
71.24 kg / 157.05 lbs
71237 g / 698.8 N
|
427.42 kg / 942.31 lbs
~0 Gs
|
| 5 mm |
447.76 kg / 987.15 lbs
8 688 Gs
|
67.16 kg / 148.07 lbs
67164 g / 658.9 N
|
402.99 kg / 888.43 lbs
~0 Gs
|
| 10 mm |
382.88 kg / 844.10 lbs
8 034 Gs
|
57.43 kg / 126.62 lbs
57432 g / 563.4 N
|
344.59 kg / 759.69 lbs
~0 Gs
|
| 20 mm |
270.41 kg / 596.14 lbs
6 752 Gs
|
40.56 kg / 89.42 lbs
40561 g / 397.9 N
|
243.37 kg / 536.53 lbs
~0 Gs
|
| 50 mm |
81.66 kg / 180.03 lbs
3 710 Gs
|
12.25 kg / 27.01 lbs
12249 g / 120.2 N
|
73.50 kg / 162.03 lbs
~0 Gs
|
| 60 mm |
54.14 kg / 119.35 lbs
3 021 Gs
|
8.12 kg / 17.90 lbs
8120 g / 79.7 N
|
48.72 kg / 107.41 lbs
~0 Gs
|
| 70 mm |
36.14 kg / 79.69 lbs
2 469 Gs
|
5.42 kg / 11.95 lbs
5422 g / 53.2 N
|
32.53 kg / 71.72 lbs
~0 Gs
|
| 80 mm |
24.40 kg / 53.80 lbs
2 028 Gs
|
3.66 kg / 8.07 lbs
3661 g / 35.9 N
|
21.96 kg / 48.42 lbs
~0 Gs
|
| 90 mm |
16.70 kg / 36.82 lbs
1 678 Gs
|
2.51 kg / 5.52 lbs
2505 g / 24.6 N
|
15.03 kg / 33.14 lbs
~0 Gs
|
| 100 mm |
11.60 kg / 25.57 lbs
1 398 Gs
|
1.74 kg / 3.84 lbs
1740 g / 17.1 N
|
10.44 kg / 23.01 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 70x40 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 37.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 29.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 17.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 7.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 70x40 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.47 km/h
(4.30 m/s)
|
10.66 J | |
| 30 mm |
22.16 km/h
(6.15 m/s)
|
21.87 J | |
| 50 mm |
27.27 km/h
(7.58 m/s)
|
33.13 J | |
| 100 mm |
38.07 km/h
(10.57 m/s)
|
64.55 J |
Tabela 9: Odporność na korozję
MW 70x40 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 70x40 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 180 982 Mx | 1809.8 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 70x40 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 164.24 kg | Standard |
| Woda (dno rzeki) |
188.05 kg
(+23.81 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
UMP 75x25 [M10x3] GW F200 GOLD DUAL Lina / N42 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenia
Unikaj kontaktu w przypadku alergii
Część populacji posiada alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zagrożenie zapłonem
Pył powstający podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie służą do zabawy. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uwaga na odpryski
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Moc przyciągania
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
