MPL 50x30x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020497
GTIN/EAN: 5906301814955
Długość
50 mm [±0,1 mm]
Szerokość
30 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
45 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.57 kg / 74.26 N
Indukcja magnetyczna
120.04 mT / 1200 Gs
Powłoka
[NiCuNi] nikiel
25.83 ZŁ z VAT / szt. + cena za transport
21.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość poprzez
formularz
w sekcji kontakt.
Parametry i formę magnesów przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MPL 50x30x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x30x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020497 |
| GTIN/EAN | 5906301814955 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 30 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 45 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.57 kg / 74.26 N |
| Indukcja magnetyczna ~ ? | 120.04 mT / 1200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe wartości są rezultat symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 50x30x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1200 Gs
120.0 mT
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
średnie ryzyko |
| 1 mm |
1176 Gs
117.6 mT
|
7.27 kg / 16.03 lbs
7270.9 g / 71.3 N
|
średnie ryzyko |
| 2 mm |
1144 Gs
114.4 mT
|
6.88 kg / 15.16 lbs
6877.1 g / 67.5 N
|
średnie ryzyko |
| 3 mm |
1105 Gs
110.5 mT
|
6.41 kg / 14.14 lbs
6414.7 g / 62.9 N
|
średnie ryzyko |
| 5 mm |
1012 Gs
101.2 mT
|
5.38 kg / 11.86 lbs
5381.2 g / 52.8 N
|
średnie ryzyko |
| 10 mm |
754 Gs
75.4 mT
|
2.99 kg / 6.59 lbs
2990.1 g / 29.3 N
|
średnie ryzyko |
| 15 mm |
535 Gs
53.5 mT
|
1.50 kg / 3.31 lbs
1503.5 g / 14.7 N
|
bezpieczny |
| 20 mm |
376 Gs
37.6 mT
|
0.74 kg / 1.64 lbs
743.3 g / 7.3 N
|
bezpieczny |
| 30 mm |
193 Gs
19.3 mT
|
0.20 kg / 0.43 lbs
195.8 g / 1.9 N
|
bezpieczny |
| 50 mm |
64 Gs
6.4 mT
|
0.02 kg / 0.05 lbs
21.4 g / 0.2 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 50x30x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.51 kg / 3.34 lbs
1514.0 g / 14.9 N
|
| 1 mm | Stal (~0.2) |
1.45 kg / 3.21 lbs
1454.0 g / 14.3 N
|
| 2 mm | Stal (~0.2) |
1.38 kg / 3.03 lbs
1376.0 g / 13.5 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.83 lbs
1282.0 g / 12.6 N
|
| 5 mm | Stal (~0.2) |
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| 10 mm | Stal (~0.2) |
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| 15 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 20 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 50x30x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.27 kg / 5.01 lbs
2271.0 g / 22.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.51 kg / 3.34 lbs
1514.0 g / 14.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.76 kg / 1.67 lbs
757.0 g / 7.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.79 kg / 8.34 lbs
3785.0 g / 37.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 50x30x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.76 kg / 1.67 lbs
757.0 g / 7.4 N
|
| 1 mm |
|
1.89 kg / 4.17 lbs
1892.5 g / 18.6 N
|
| 2 mm |
|
3.79 kg / 8.34 lbs
3785.0 g / 37.1 N
|
| 3 mm |
|
5.68 kg / 12.52 lbs
5677.5 g / 55.7 N
|
| 5 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 10 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 11 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 12 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 50x30x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
OK |
| 40 °C | -2.2% |
7.40 kg / 16.32 lbs
7403.5 g / 72.6 N
|
OK |
| 60 °C | -4.4% |
7.24 kg / 15.95 lbs
7236.9 g / 71.0 N
|
|
| 80 °C | -6.6% |
7.07 kg / 15.59 lbs
7070.4 g / 69.4 N
|
|
| 100 °C | -28.8% |
5.39 kg / 11.88 lbs
5389.8 g / 52.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 50x30x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.32 kg / 29.37 lbs
2 260 Gs
|
2.00 kg / 4.41 lbs
1999 g / 19.6 N
|
N/A |
| 1 mm |
13.09 kg / 28.85 lbs
2 379 Gs
|
1.96 kg / 4.33 lbs
1963 g / 19.3 N
|
11.78 kg / 25.96 lbs
~0 Gs
|
| 2 mm |
12.80 kg / 28.21 lbs
2 353 Gs
|
1.92 kg / 4.23 lbs
1920 g / 18.8 N
|
11.52 kg / 25.39 lbs
~0 Gs
|
| 3 mm |
12.47 kg / 27.49 lbs
2 322 Gs
|
1.87 kg / 4.12 lbs
1870 g / 18.3 N
|
11.22 kg / 24.74 lbs
~0 Gs
|
| 5 mm |
11.71 kg / 25.82 lbs
2 251 Gs
|
1.76 kg / 3.87 lbs
1756 g / 17.2 N
|
10.54 kg / 23.23 lbs
~0 Gs
|
| 10 mm |
9.47 kg / 20.88 lbs
2 024 Gs
|
1.42 kg / 3.13 lbs
1421 g / 13.9 N
|
8.52 kg / 18.79 lbs
~0 Gs
|
| 20 mm |
5.26 kg / 11.60 lbs
1 509 Gs
|
0.79 kg / 1.74 lbs
789 g / 7.7 N
|
4.74 kg / 10.44 lbs
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 lbs
534 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 60 mm |
0.34 kg / 0.76 lbs
386 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 70 mm |
0.19 kg / 0.41 lbs
285 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 80 mm |
0.11 kg / 0.23 lbs
214 Gs
|
0.02 kg / 0.03 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 90 mm |
0.06 kg / 0.14 lbs
164 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.12 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.08 lbs
128 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 50x30x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 50x30x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.99 km/h
(4.44 m/s)
|
0.44 J | |
| 30 mm |
23.02 km/h
(6.39 m/s)
|
0.92 J | |
| 50 mm |
29.30 km/h
(8.14 m/s)
|
1.49 J | |
| 100 mm |
41.37 km/h
(11.49 m/s)
|
2.97 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x30x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 50x30x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 399 Mx | 224.0 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 50x30x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.57 kg | Standard |
| Woda (dno rzeki) |
8.67 kg
(+1.10 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi jedynie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
To nie jest zabawka
Te produkty magnetyczne to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Nadwrażliwość na metale
Część populacji posiada nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Rekomendujemy noszenie rękawic bezlateksowych.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Temperatura pracy
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Nośniki danych
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
