MPL 50x30x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020497
GTIN/EAN: 5906301814955
Długość
50 mm [±0,1 mm]
Szerokość
30 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
45 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.57 kg / 74.26 N
Indukcja magnetyczna
120.04 mT / 1200 Gs
Powłoka
[NiCuNi] nikiel
25.83 ZŁ z VAT / szt. + cena za transport
21.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo pisz korzystając z
formularz zapytania
na naszej stronie.
Udźwig oraz budowę magnesu zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Parametry - MPL 50x30x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x30x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020497 |
| GTIN/EAN | 5906301814955 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 30 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 45 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.57 kg / 74.26 N |
| Indukcja magnetyczna ~ ? | 120.04 mT / 1200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane są rezultat analizy fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 50x30x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1200 Gs
120.0 mT
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
mocny |
| 1 mm |
1176 Gs
117.6 mT
|
7.27 kg / 16.03 lbs
7270.9 g / 71.3 N
|
mocny |
| 2 mm |
1144 Gs
114.4 mT
|
6.88 kg / 15.16 lbs
6877.1 g / 67.5 N
|
mocny |
| 3 mm |
1105 Gs
110.5 mT
|
6.41 kg / 14.14 lbs
6414.7 g / 62.9 N
|
mocny |
| 5 mm |
1012 Gs
101.2 mT
|
5.38 kg / 11.86 lbs
5381.2 g / 52.8 N
|
mocny |
| 10 mm |
754 Gs
75.4 mT
|
2.99 kg / 6.59 lbs
2990.1 g / 29.3 N
|
mocny |
| 15 mm |
535 Gs
53.5 mT
|
1.50 kg / 3.31 lbs
1503.5 g / 14.7 N
|
niskie ryzyko |
| 20 mm |
376 Gs
37.6 mT
|
0.74 kg / 1.64 lbs
743.3 g / 7.3 N
|
niskie ryzyko |
| 30 mm |
193 Gs
19.3 mT
|
0.20 kg / 0.43 lbs
195.8 g / 1.9 N
|
niskie ryzyko |
| 50 mm |
64 Gs
6.4 mT
|
0.02 kg / 0.05 lbs
21.4 g / 0.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 50x30x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.51 kg / 3.34 lbs
1514.0 g / 14.9 N
|
| 1 mm | Stal (~0.2) |
1.45 kg / 3.21 lbs
1454.0 g / 14.3 N
|
| 2 mm | Stal (~0.2) |
1.38 kg / 3.03 lbs
1376.0 g / 13.5 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.83 lbs
1282.0 g / 12.6 N
|
| 5 mm | Stal (~0.2) |
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| 10 mm | Stal (~0.2) |
0.60 kg / 1.32 lbs
598.0 g / 5.9 N
|
| 15 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 20 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 50x30x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.27 kg / 5.01 lbs
2271.0 g / 22.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.51 kg / 3.34 lbs
1514.0 g / 14.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.76 kg / 1.67 lbs
757.0 g / 7.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.79 kg / 8.34 lbs
3785.0 g / 37.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 50x30x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.76 kg / 1.67 lbs
757.0 g / 7.4 N
|
| 1 mm |
|
1.89 kg / 4.17 lbs
1892.5 g / 18.6 N
|
| 2 mm |
|
3.79 kg / 8.34 lbs
3785.0 g / 37.1 N
|
| 3 mm |
|
5.68 kg / 12.52 lbs
5677.5 g / 55.7 N
|
| 5 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 10 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 11 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
| 12 mm |
|
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 50x30x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.57 kg / 16.69 lbs
7570.0 g / 74.3 N
|
OK |
| 40 °C | -2.2% |
7.40 kg / 16.32 lbs
7403.5 g / 72.6 N
|
OK |
| 60 °C | -4.4% |
7.24 kg / 15.95 lbs
7236.9 g / 71.0 N
|
|
| 80 °C | -6.6% |
7.07 kg / 15.59 lbs
7070.4 g / 69.4 N
|
|
| 100 °C | -28.8% |
5.39 kg / 11.88 lbs
5389.8 g / 52.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 50x30x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.32 kg / 29.37 lbs
2 260 Gs
|
2.00 kg / 4.41 lbs
1999 g / 19.6 N
|
N/A |
| 1 mm |
13.09 kg / 28.85 lbs
2 379 Gs
|
1.96 kg / 4.33 lbs
1963 g / 19.3 N
|
11.78 kg / 25.96 lbs
~0 Gs
|
| 2 mm |
12.80 kg / 28.21 lbs
2 353 Gs
|
1.92 kg / 4.23 lbs
1920 g / 18.8 N
|
11.52 kg / 25.39 lbs
~0 Gs
|
| 3 mm |
12.47 kg / 27.49 lbs
2 322 Gs
|
1.87 kg / 4.12 lbs
1870 g / 18.3 N
|
11.22 kg / 24.74 lbs
~0 Gs
|
| 5 mm |
11.71 kg / 25.82 lbs
2 251 Gs
|
1.76 kg / 3.87 lbs
1756 g / 17.2 N
|
10.54 kg / 23.23 lbs
~0 Gs
|
| 10 mm |
9.47 kg / 20.88 lbs
2 024 Gs
|
1.42 kg / 3.13 lbs
1421 g / 13.9 N
|
8.52 kg / 18.79 lbs
~0 Gs
|
| 20 mm |
5.26 kg / 11.60 lbs
1 509 Gs
|
0.79 kg / 1.74 lbs
789 g / 7.7 N
|
4.74 kg / 10.44 lbs
~0 Gs
|
| 50 mm |
0.66 kg / 1.45 lbs
534 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 60 mm |
0.34 kg / 0.76 lbs
386 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 70 mm |
0.19 kg / 0.41 lbs
285 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 80 mm |
0.11 kg / 0.23 lbs
214 Gs
|
0.02 kg / 0.03 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 90 mm |
0.06 kg / 0.14 lbs
164 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.12 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.08 lbs
128 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 50x30x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 50x30x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.99 km/h
(4.44 m/s)
|
0.44 J | |
| 30 mm |
23.02 km/h
(6.39 m/s)
|
0.92 J | |
| 50 mm |
29.30 km/h
(8.14 m/s)
|
1.49 J | |
| 100 mm |
41.37 km/h
(11.49 m/s)
|
2.97 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x30x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 50x30x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 399 Mx | 224.0 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 50x30x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.57 kg | Standard |
| Woda (dno rzeki) |
8.67 kg
(+1.10 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, działającej jako idealny przewodnik strumienia
- której grubość to min. 10 mm
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (bez farby)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Alergia na nikiel
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Ochrona urządzeń
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Ochrona oczu
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Obróbka mechaniczna
Proszek powstający podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Utrata mocy w cieple
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca działanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
