MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020151
GTIN/EAN: 5906301811572
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
12 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.31 kg / 91.33 N
Indukcja magnetyczna
275.57 mT / 2756 Gs
Powłoka
[NiCuNi] nikiel
9.21 ZŁ z VAT / szt. + cena za transport
7.49 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie pisz za pomocą
nasz formularz online
przez naszą stronę.
Właściwości a także kształt elementów magnetycznych wyliczysz u nas w
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna produktu - MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020151 |
| GTIN/EAN | 5906301811572 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 12 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.31 kg / 91.33 N |
| Indukcja magnetyczna ~ ? | 275.57 mT / 2756 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe dane są wynik analizy matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 40x10x4x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
średnie ryzyko |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 lbs
7143.1 g / 70.1 N
|
średnie ryzyko |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 lbs
5128.9 g / 50.3 N
|
średnie ryzyko |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 lbs
3559.5 g / 34.9 N
|
średnie ryzyko |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 lbs
1688.2 g / 16.6 N
|
niskie ryzyko |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 lbs
334.9 g / 3.3 N
|
niskie ryzyko |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 lbs
94.2 g / 0.9 N
|
niskie ryzyko |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 lbs
32.8 g / 0.3 N
|
niskie ryzyko |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 40x10x4x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 lbs
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 lbs
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 lbs
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 40x10x4x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 lbs
2793.0 g / 27.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 lbs
1862.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 lbs
931.0 g / 9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 lbs
4655.0 g / 45.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 40x10x4x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 lbs
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 lbs
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 lbs
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 lbs
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 40x10x4x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 lbs
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 lbs
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 lbs
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 lbs
6628.7 g / 65.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x10x4x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 lbs
4 164 Gs
|
2.81 kg / 6.19 lbs
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 lbs
5 185 Gs
|
2.49 kg / 5.48 lbs
2486 g / 24.4 N
|
14.91 kg / 32.88 lbs
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 lbs
4 826 Gs
|
2.15 kg / 4.75 lbs
2153 g / 21.1 N
|
12.92 kg / 28.48 lbs
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 lbs
4 455 Gs
|
1.84 kg / 4.05 lbs
1836 g / 18.0 N
|
11.01 kg / 24.28 lbs
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 lbs
3 737 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 lbs
2 346 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.05 kg / 6.73 lbs
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 lbs
1 045 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.61 kg / 1.34 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 lbs
207 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 lbs
138 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
51 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 40x10x4x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x10x4x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x10x4x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 40x10x4x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 840 Mx | 98.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x10x4x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.31 kg | Standard |
| Woda (dno rzeki) |
10.66 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- z użyciem płyty ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Ostrzeżenia
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Interferencja medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko złamań
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Łamliwość magnesów
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Bezpieczny dystans
Nie przykładaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
