MW 2x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010055
GTIN: 5906301810544
Średnica Ø
2 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
0.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.09 kg / 0.86 N
Indukcja magnetyczna
597.70 mT / 5977 Gs
Powłoka
[NiCuNi] nikiel
0.209 ZŁ z VAT / szt. + cena za transport
0.1700 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Dzwoń do nas
+48 888 99 98 98
ewentualnie napisz przez
nasz formularz online
na stronie kontaktowej.
Siłę i wygląd magnesów zweryfikujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 2x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 2x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010055 |
| GTIN | 5906301810544 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 2 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 0.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.09 kg / 0.86 N |
| Indukcja magnetyczna ~ ? | 597.70 mT / 5977 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe dane są rezultat symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału NdFeB. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MW 2x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5954 Gs
595.4 mT
|
0.09 kg / 90.0 g
0.9 N
|
niskie ryzyko |
| 1 mm |
1696 Gs
169.6 mT
|
0.01 kg / 7.3 g
0.1 N
|
niskie ryzyko |
| 2 mm |
570 Gs
57.0 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
| 3 mm |
256 Gs
25.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 5 mm |
82 Gs
8.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 10 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 15 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 2x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 1 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 2x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.03 kg / 27.0 g
0.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.02 kg / 18.0 g
0.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.01 kg / 9.0 g
0.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
MW 2x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.01 kg / 9.0 g
0.1 N
|
| 1 mm |
|
0.02 kg / 22.5 g
0.2 N
|
| 2 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 5 mm |
|
0.09 kg / 90.0 g
0.9 N
|
| 10 mm |
|
0.09 kg / 90.0 g
0.9 N
|
MW 2x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.09 kg / 90.0 g
0.9 N
|
OK |
| 40 °C | -2.2% |
0.09 kg / 88.0 g
0.9 N
|
OK |
| 60 °C | -4.4% |
0.09 kg / 86.0 g
0.8 N
|
OK |
| 80 °C | -6.6% |
0.08 kg / 84.1 g
0.8 N
|
|
| 100 °C | -28.8% |
0.06 kg / 64.1 g
0.6 N
|
MW 2x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.69 kg / 687 g
6.7 N
6 090 Gs
|
N/A |
| 1 mm |
0.21 kg / 208 g
2.0 N
6 559 Gs
|
0.19 kg / 187 g
1.8 N
~0 Gs
|
| 2 mm |
0.06 kg / 56 g
0.5 N
3 391 Gs
|
0.05 kg / 50 g
0.5 N
~0 Gs
|
| 3 mm |
0.02 kg / 17 g
0.2 N
1 883 Gs
|
0.02 kg / 15 g
0.2 N
~0 Gs
|
| 5 mm |
0.00 kg / 3 g
0.0 N
743 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
165 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
3 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 2x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 2x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.89 km/h
(8.86 m/s)
|
0.00 J | |
| 30 mm |
55.24 km/h
(15.34 m/s)
|
0.01 J | |
| 50 mm |
71.31 km/h
(19.81 m/s)
|
0.02 J | |
| 100 mm |
100.85 km/h
(28.01 m/s)
|
0.04 J |
MW 2x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 2x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 209 Mx | 2.1 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
MW 2x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.09 kg | Standard |
| Woda (dno rzeki) |
0.10 kg
(+0.01 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych NdFeB.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – za chuda płyta nie przyjmuje całego pola, przez co część mocy jest tracona na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Ostrzeżenie dla alergików
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Karty i dyski
Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Uwaga medyczna
Osoby z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
