MW 2x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010054
GTIN/EAN: 5906301810537
Średnica Ø
2 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
0.24 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.07 kg / 0.70 N
Indukcja magnetyczna
613.08 mT / 6131 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz korzystając z
formularz
w sekcji kontakt.
Siłę oraz wygląd magnesów neodymowych obliczysz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 2x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 2x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010054 |
| GTIN/EAN | 5906301810537 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 2 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 0.24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.07 kg / 0.70 N |
| Indukcja magnetyczna ~ ? | 613.08 mT / 6131 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione dane są bezpośredni efekt analizy inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 2x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6107 Gs
610.7 mT
|
0.07 kg / 70.0 g
0.7 N
|
bezpieczny |
| 1 mm |
1790 Gs
179.0 mT
|
0.01 kg / 6.0 g
0.1 N
|
bezpieczny |
| 2 mm |
633 Gs
63.3 mT
|
0.00 kg / 0.8 g
0.0 N
|
bezpieczny |
| 3 mm |
300 Gs
30.0 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 5 mm |
107 Gs
10.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 10 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 15 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 2x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 1 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 2x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.02 kg / 21.0 g
0.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.01 kg / 14.0 g
0.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.01 kg / 7.0 g
0.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.04 kg / 35.0 g
0.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 2x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.01 kg / 7.0 g
0.1 N
|
| 1 mm |
|
0.02 kg / 17.5 g
0.2 N
|
| 2 mm |
|
0.04 kg / 35.0 g
0.3 N
|
| 5 mm |
|
0.07 kg / 70.0 g
0.7 N
|
| 10 mm |
|
0.07 kg / 70.0 g
0.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 2x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.07 kg / 70.0 g
0.7 N
|
OK |
| 40 °C | -2.2% |
0.07 kg / 68.5 g
0.7 N
|
OK |
| 60 °C | -4.4% |
0.07 kg / 66.9 g
0.7 N
|
OK |
| 80 °C | -6.6% |
0.07 kg / 65.4 g
0.6 N
|
|
| 100 °C | -28.8% |
0.05 kg / 49.8 g
0.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 2x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.72 kg / 722 g
7.1 N
6 130 Gs
|
N/A |
| 1 mm |
0.22 kg / 224 g
2.2 N
6 799 Gs
|
0.20 kg / 201 g
2.0 N
~0 Gs
|
| 2 mm |
0.06 kg / 62 g
0.6 N
3 581 Gs
|
0.06 kg / 56 g
0.5 N
~0 Gs
|
| 3 mm |
0.02 kg / 20 g
0.2 N
2 036 Gs
|
0.02 kg / 18 g
0.2 N
~0 Gs
|
| 5 mm |
0.00 kg / 3 g
0.0 N
847 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
213 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
46 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
5 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 2x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 2x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.22 km/h
(4.78 m/s)
|
0.00 J | |
| 30 mm |
29.83 km/h
(8.29 m/s)
|
0.01 J | |
| 50 mm |
38.51 km/h
(10.70 m/s)
|
0.01 J | |
| 100 mm |
54.47 km/h
(15.13 m/s)
|
0.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 2x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 2x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 232 Mx | 2.3 µWb |
| Współczynnik Pc | 1.55 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 2x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.07 kg | Standard |
| Woda (dno rzeki) |
0.08 kg
(+0.01 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi jedynie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, Au, srebro) mają estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Ryzyko zmiażdżenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Nie zbliżaj do komputera
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Zagrożenie życia
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Alergia na nikiel
Część populacji ma alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Wskazane jest noszenie rękawiczek ochronnych.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ogromna siła
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
