MW 29x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010053
GTIN/EAN: 5906301810520
Średnica Ø
29 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.82 kg / 204.22 N
Indukcja magnetyczna
351.88 mT / 3519 Gs
Powłoka
[NiCuNi] nikiel
17.34 ZŁ z VAT / szt. + cena za transport
14.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo pisz za pomocą
nasz formularz online
na naszej stronie.
Właściwości oraz wygląd elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane - MW 29x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 29x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010053 |
| GTIN/EAN | 5906301810520 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.82 kg / 204.22 N |
| Indukcja magnetyczna ~ ? | 351.88 mT / 3519 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione informacje stanowią wynik kalkulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 29x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3518 Gs
351.8 mT
|
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
|
miażdżący |
| 1 mm |
3321 Gs
332.1 mT
|
18.55 kg / 40.89 lbs
18548.8 g / 182.0 N
|
miażdżący |
| 2 mm |
3106 Gs
310.6 mT
|
16.23 kg / 35.77 lbs
16226.1 g / 159.2 N
|
miażdżący |
| 3 mm |
2883 Gs
288.3 mT
|
13.98 kg / 30.82 lbs
13978.2 g / 137.1 N
|
miażdżący |
| 5 mm |
2437 Gs
243.7 mT
|
9.99 kg / 22.02 lbs
9987.1 g / 98.0 N
|
średnie ryzyko |
| 10 mm |
1500 Gs
150.0 mT
|
3.78 kg / 8.34 lbs
3783.1 g / 37.1 N
|
średnie ryzyko |
| 15 mm |
905 Gs
90.5 mT
|
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
|
niskie ryzyko |
| 20 mm |
563 Gs
56.3 mT
|
0.53 kg / 1.17 lbs
532.4 g / 5.2 N
|
niskie ryzyko |
| 30 mm |
247 Gs
24.7 mT
|
0.10 kg / 0.23 lbs
102.4 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
72 Gs
7.2 mT
|
0.01 kg / 0.02 lbs
8.7 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 29x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
|
| 1 mm | Stal (~0.2) |
3.71 kg / 8.18 lbs
3710.0 g / 36.4 N
|
| 2 mm | Stal (~0.2) |
3.25 kg / 7.16 lbs
3246.0 g / 31.8 N
|
| 3 mm | Stal (~0.2) |
2.80 kg / 6.16 lbs
2796.0 g / 27.4 N
|
| 5 mm | Stal (~0.2) |
2.00 kg / 4.40 lbs
1998.0 g / 19.6 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 lbs
756.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 29x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.25 kg / 13.77 lbs
6246.0 g / 61.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.08 kg / 4.59 lbs
2082.0 g / 20.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.41 kg / 22.95 lbs
10410.0 g / 102.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 29x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.30 lbs
1041.0 g / 10.2 N
|
| 1 mm |
|
2.60 kg / 5.74 lbs
2602.5 g / 25.5 N
|
| 2 mm |
|
5.21 kg / 11.48 lbs
5205.0 g / 51.1 N
|
| 3 mm |
|
7.81 kg / 17.21 lbs
7807.5 g / 76.6 N
|
| 5 mm |
|
13.01 kg / 28.69 lbs
13012.5 g / 127.7 N
|
| 10 mm |
|
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
|
| 11 mm |
|
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
|
| 12 mm |
|
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 29x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
|
OK |
| 40 °C | -2.2% |
20.36 kg / 44.89 lbs
20362.0 g / 199.8 N
|
OK |
| 60 °C | -4.4% |
19.90 kg / 43.88 lbs
19903.9 g / 195.3 N
|
|
| 80 °C | -6.6% |
19.45 kg / 42.87 lbs
19445.9 g / 190.8 N
|
|
| 100 °C | -28.8% |
14.82 kg / 32.68 lbs
14823.8 g / 145.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 29x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.40 kg / 111.11 lbs
5 016 Gs
|
7.56 kg / 16.67 lbs
7560 g / 74.2 N
|
N/A |
| 1 mm |
47.70 kg / 105.17 lbs
6 845 Gs
|
7.16 kg / 15.78 lbs
7156 g / 70.2 N
|
42.93 kg / 94.65 lbs
~0 Gs
|
| 2 mm |
44.90 kg / 98.99 lbs
6 641 Gs
|
6.74 kg / 14.85 lbs
6735 g / 66.1 N
|
40.41 kg / 89.09 lbs
~0 Gs
|
| 3 mm |
42.08 kg / 92.77 lbs
6 429 Gs
|
6.31 kg / 13.92 lbs
6312 g / 61.9 N
|
37.87 kg / 83.50 lbs
~0 Gs
|
| 5 mm |
36.52 kg / 80.52 lbs
5 990 Gs
|
5.48 kg / 12.08 lbs
5478 g / 53.7 N
|
32.87 kg / 72.47 lbs
~0 Gs
|
| 10 mm |
24.18 kg / 53.30 lbs
4 873 Gs
|
3.63 kg / 7.99 lbs
3626 g / 35.6 N
|
21.76 kg / 47.97 lbs
~0 Gs
|
| 20 mm |
9.16 kg / 20.19 lbs
2 999 Gs
|
1.37 kg / 3.03 lbs
1374 g / 13.5 N
|
8.24 kg / 18.17 lbs
~0 Gs
|
| 50 mm |
0.54 kg / 1.19 lbs
729 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.07 lbs
~0 Gs
|
| 60 mm |
0.25 kg / 0.55 lbs
493 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.27 lbs
347 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.14 lbs
252 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.08 lbs
188 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
144 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 29x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 29x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
1.00 J | |
| 30 mm |
35.92 km/h
(9.98 m/s)
|
2.47 J | |
| 50 mm |
46.24 km/h
(12.85 m/s)
|
4.09 J | |
| 100 mm |
65.38 km/h
(18.16 m/s)
|
8.17 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 29x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 29x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 471 Mx | 244.7 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 29x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.82 kg | Standard |
| Woda (dno rzeki) |
23.84 kg
(+3.02 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Limity termiczne
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i siłę przyciągania.
Ryzyko złamań
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ryzyko pożaru
Proszek generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Nośniki danych
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ochrona oczu
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
