MW 29x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010053
GTIN: 5906301810520
Średnica Ø
29 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.82 kg / 204.22 N
Indukcja magnetyczna
351.88 mT / 3519 Gs
Powłoka
[NiCuNi] nikiel
17.34 ZŁ z VAT / szt. + cena za transport
14.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się korzystając z
nasz formularz online
przez naszą stronę.
Moc oraz formę magnesu neodymowego obliczysz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 29x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 29x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010053 |
| GTIN | 5906301810520 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.82 kg / 204.22 N |
| Indukcja magnetyczna ~ ? | 351.88 mT / 3519 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu - parametry techniczne
Poniższe wartości są rezultat symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału NdFeB. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
MW 29x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3518 Gs
351.8 mT
|
20.82 kg / 20820.0 g
204.2 N
|
miażdżący |
| 1 mm |
3321 Gs
332.1 mT
|
18.55 kg / 18548.8 g
182.0 N
|
miażdżący |
| 2 mm |
3106 Gs
310.6 mT
|
16.23 kg / 16226.1 g
159.2 N
|
miażdżący |
| 3 mm |
2883 Gs
288.3 mT
|
13.98 kg / 13978.2 g
137.1 N
|
miażdżący |
| 5 mm |
2437 Gs
243.7 mT
|
9.99 kg / 9987.1 g
98.0 N
|
średnie ryzyko |
| 10 mm |
1500 Gs
150.0 mT
|
3.78 kg / 3783.1 g
37.1 N
|
średnie ryzyko |
| 15 mm |
905 Gs
90.5 mT
|
1.38 kg / 1379.2 g
13.5 N
|
niskie ryzyko |
| 20 mm |
563 Gs
56.3 mT
|
0.53 kg / 532.4 g
5.2 N
|
niskie ryzyko |
| 30 mm |
247 Gs
24.7 mT
|
0.10 kg / 102.4 g
1.0 N
|
niskie ryzyko |
| 50 mm |
72 Gs
7.2 mT
|
0.01 kg / 8.7 g
0.1 N
|
niskie ryzyko |
MW 29x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.16 kg / 4164.0 g
40.8 N
|
| 1 mm | Stal (~0.2) |
3.71 kg / 3710.0 g
36.4 N
|
| 2 mm | Stal (~0.2) |
3.25 kg / 3246.0 g
31.8 N
|
| 3 mm | Stal (~0.2) |
2.80 kg / 2796.0 g
27.4 N
|
| 5 mm | Stal (~0.2) |
2.00 kg / 1998.0 g
19.6 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 756.0 g
7.4 N
|
| 15 mm | Stal (~0.2) |
0.28 kg / 276.0 g
2.7 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MW 29x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.25 kg / 6246.0 g
61.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.16 kg / 4164.0 g
40.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.08 kg / 2082.0 g
20.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.41 kg / 10410.0 g
102.1 N
|
MW 29x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 1041.0 g
10.2 N
|
| 1 mm |
|
2.60 kg / 2602.5 g
25.5 N
|
| 2 mm |
|
5.21 kg / 5205.0 g
51.1 N
|
| 5 mm |
|
13.01 kg / 13012.5 g
127.7 N
|
| 10 mm |
|
20.82 kg / 20820.0 g
204.2 N
|
MW 29x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.82 kg / 20820.0 g
204.2 N
|
OK |
| 40 °C | -2.2% |
20.36 kg / 20362.0 g
199.8 N
|
OK |
| 60 °C | -4.4% |
19.90 kg / 19903.9 g
195.3 N
|
|
| 80 °C | -6.6% |
19.45 kg / 19445.9 g
190.8 N
|
|
| 100 °C | -28.8% |
14.82 kg / 14823.8 g
145.4 N
|
MW 29x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
20.84 kg / 20842 g
204.5 N
7 040 Gs
|
N/A |
| 1 mm |
18.55 kg / 18549 g
182.0 N
6 845 Gs
|
16.69 kg / 16694 g
163.8 N
~0 Gs
|
| 2 mm |
16.23 kg / 16226 g
159.2 N
6 641 Gs
|
14.60 kg / 14603 g
143.3 N
~0 Gs
|
| 3 mm |
13.98 kg / 13978 g
137.1 N
6 429 Gs
|
12.58 kg / 12580 g
123.4 N
~0 Gs
|
| 5 mm |
9.99 kg / 9987 g
98.0 N
5 990 Gs
|
8.99 kg / 8988 g
88.2 N
~0 Gs
|
| 10 mm |
3.78 kg / 3783 g
37.1 N
4 873 Gs
|
3.40 kg / 3405 g
33.4 N
~0 Gs
|
| 20 mm |
0.53 kg / 532 g
5.2 N
2 999 Gs
|
0.48 kg / 479 g
4.7 N
~0 Gs
|
| 50 mm |
0.01 kg / 9 g
0.1 N
729 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 29x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MW 29x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
1.00 J | |
| 30 mm |
35.92 km/h
(9.98 m/s)
|
2.47 J | |
| 50 mm |
46.24 km/h
(12.85 m/s)
|
4.09 J | |
| 100 mm |
65.38 km/h
(18.16 m/s)
|
8.17 J |
MW 29x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 29x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 471 Mx | 244.7 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
MW 29x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.82 kg | Standard |
| Woda (dno rzeki) |
23.84 kg
(+3.02 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne produkty
Wady i zalety magnesów neodymowych NdFeB.
Należy pamiętać, iż obok wysokiej mocy, magnesy te cechują się następującymi plusami:
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Parametr siły jest rezultatem pomiaru zrealizowanego w następującej konfiguracji:
- z zastosowaniem podłoża ze miękkiej stali, działającej jako zwora magnetyczna
- której grubość wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
W praktyce, realna moc zależy od szeregu czynników, wymienionych od kluczowych:
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Udźwig określano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Ostrzeżenia
Zasady obsługi
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Reakcje alergiczne
Pewna grupa użytkowników wykazuje uczulenie na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Sugerujemy używanie rękawic bezlateksowych.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Rozprysk materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Poważne obrażenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
To nie jest zabawka
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Ważne!
Dowiedz się więcej o ryzyku w artykule: BHP magnesów z neodymu.
