MW 29x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010053
GTIN/EAN: 5906301810520
Średnica Ø
29 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.82 kg / 204.22 N
Indukcja magnetyczna
351.88 mT / 3519 Gs
Powłoka
[NiCuNi] nikiel
17.34 ZŁ z VAT / szt. + cena za transport
14.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub skontaktuj się poprzez
formularz zgłoszeniowy
na naszej stronie.
Właściwości i budowę magnesu skontrolujesz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 29x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 29x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010053 |
| GTIN/EAN | 5906301810520 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.82 kg / 204.22 N |
| Indukcja magnetyczna ~ ? | 351.88 mT / 3519 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Niniejsze wartości stanowią rezultat symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 29x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3518 Gs
351.8 mT
|
20.82 kg / 20820.0 g
204.2 N
|
miażdżący |
| 1 mm |
3321 Gs
332.1 mT
|
18.55 kg / 18548.8 g
182.0 N
|
miażdżący |
| 2 mm |
3106 Gs
310.6 mT
|
16.23 kg / 16226.1 g
159.2 N
|
miażdżący |
| 3 mm |
2883 Gs
288.3 mT
|
13.98 kg / 13978.2 g
137.1 N
|
miażdżący |
| 5 mm |
2437 Gs
243.7 mT
|
9.99 kg / 9987.1 g
98.0 N
|
uwaga |
| 10 mm |
1500 Gs
150.0 mT
|
3.78 kg / 3783.1 g
37.1 N
|
uwaga |
| 15 mm |
905 Gs
90.5 mT
|
1.38 kg / 1379.2 g
13.5 N
|
bezpieczny |
| 20 mm |
563 Gs
56.3 mT
|
0.53 kg / 532.4 g
5.2 N
|
bezpieczny |
| 30 mm |
247 Gs
24.7 mT
|
0.10 kg / 102.4 g
1.0 N
|
bezpieczny |
| 50 mm |
72 Gs
7.2 mT
|
0.01 kg / 8.7 g
0.1 N
|
bezpieczny |
MW 29x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.16 kg / 4164.0 g
40.8 N
|
| 1 mm | Stal (~0.2) |
3.71 kg / 3710.0 g
36.4 N
|
| 2 mm | Stal (~0.2) |
3.25 kg / 3246.0 g
31.8 N
|
| 3 mm | Stal (~0.2) |
2.80 kg / 2796.0 g
27.4 N
|
| 5 mm | Stal (~0.2) |
2.00 kg / 1998.0 g
19.6 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 756.0 g
7.4 N
|
| 15 mm | Stal (~0.2) |
0.28 kg / 276.0 g
2.7 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MW 29x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.25 kg / 6246.0 g
61.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.16 kg / 4164.0 g
40.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.08 kg / 2082.0 g
20.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.41 kg / 10410.0 g
102.1 N
|
MW 29x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 1041.0 g
10.2 N
|
| 1 mm |
|
2.60 kg / 2602.5 g
25.5 N
|
| 2 mm |
|
5.21 kg / 5205.0 g
51.1 N
|
| 5 mm |
|
13.01 kg / 13012.5 g
127.7 N
|
| 10 mm |
|
20.82 kg / 20820.0 g
204.2 N
|
MW 29x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.82 kg / 20820.0 g
204.2 N
|
OK |
| 40 °C | -2.2% |
20.36 kg / 20362.0 g
199.8 N
|
OK |
| 60 °C | -4.4% |
19.90 kg / 19903.9 g
195.3 N
|
|
| 80 °C | -6.6% |
19.45 kg / 19445.9 g
190.8 N
|
|
| 100 °C | -28.8% |
14.82 kg / 14823.8 g
145.4 N
|
MW 29x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
50.40 kg / 50399 g
494.4 N
5 016 Gs
|
N/A |
| 1 mm |
47.70 kg / 47704 g
468.0 N
6 845 Gs
|
42.93 kg / 42934 g
421.2 N
~0 Gs
|
| 2 mm |
44.90 kg / 44901 g
440.5 N
6 641 Gs
|
40.41 kg / 40411 g
396.4 N
~0 Gs
|
| 3 mm |
42.08 kg / 42082 g
412.8 N
6 429 Gs
|
37.87 kg / 37874 g
371.5 N
~0 Gs
|
| 5 mm |
36.52 kg / 36522 g
358.3 N
5 990 Gs
|
32.87 kg / 32870 g
322.5 N
~0 Gs
|
| 10 mm |
24.18 kg / 24176 g
237.2 N
4 873 Gs
|
21.76 kg / 21758 g
213.4 N
~0 Gs
|
| 20 mm |
9.16 kg / 9158 g
89.8 N
2 999 Gs
|
8.24 kg / 8242 g
80.9 N
~0 Gs
|
| 50 mm |
0.54 kg / 542 g
5.3 N
729 Gs
|
0.49 kg / 487 g
4.8 N
~0 Gs
|
MW 29x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MW 29x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
1.00 J | |
| 30 mm |
35.92 km/h
(9.98 m/s)
|
2.47 J | |
| 50 mm |
46.24 km/h
(12.85 m/s)
|
4.09 J | |
| 100 mm |
65.38 km/h
(18.16 m/s)
|
8.17 J |
MW 29x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 29x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 471 Mx | 244.7 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
MW 29x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.82 kg | Standard |
| Woda (dno rzeki) |
23.84 kg
(+3.02 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, pełniącej rolę element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- przy całkowitym braku odstępu (bez farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Niebezpieczeństwo dla rozruszników
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Unikaj kontaktu w przypadku alergii
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Elektronika precyzyjna
Silne pole magnetyczne zakłóca funkcjonowanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Samozapłon
Pył generowany podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
