Neodymy – szeroki wybór kształtów

Chcesz kupić naprawdę silne magnesy? Posiadamy w sprzedaży kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do użytku w domu, garażu oraz zadań przemysłowych. Zobacz produkty w naszym magazynie.

poznaj cennik i wymiary

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Uchwyty magnetyczne przemysłowe

Niezawodne rozwiązania do montażu bezinwazyjnego. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na magazynach. Są niezastąpione przy instalacji lamp, sensorów oraz banerów.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 28.9x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010051

GTIN/EAN: 5906301810506

Średnica Ø

28.9 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

49.2 g

Kierunek magnesowania

→ diametralny

Udźwig

20.74 kg / 203.46 N

Indukcja magnetyczna

352.70 mT / 3527 Gs

Powłoka

[NiCuNi] nikiel

23.99 z VAT / szt. + cena za transport

19.50 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
19.50 ZŁ
23.99 ZŁ
cena od 40 szt.
18.33 ZŁ
22.55 ZŁ
cena od 130 szt.
17.16 ZŁ
21.11 ZŁ
Chcesz się targować?

Zadzwoń do nas +48 22 499 98 98 ewentualnie pisz poprzez formularz na stronie kontakt.
Udźwig a także formę magnesów neodymowych obliczysz w naszym kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Parametry produktu - MW 28.9x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 28.9x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010051
GTIN/EAN 5906301810506
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 28.9 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 49.2 g
Kierunek magnesowania → diametralny
Udźwig ~ ? 20.74 kg / 203.46 N
Indukcja magnetyczna ~ ? 352.70 mT / 3527 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 28.9x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Przedstawione informacje stanowią wynik kalkulacji fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 28.9x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3526 Gs
352.6 mT
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
krytyczny poziom
1 mm 3327 Gs
332.7 mT
18.47 kg / 40.71 lbs
18466.2 g / 181.2 N
krytyczny poziom
2 mm 3111 Gs
311.1 mT
16.14 kg / 35.59 lbs
16142.6 g / 158.4 N
krytyczny poziom
3 mm 2886 Gs
288.6 mT
13.90 kg / 30.63 lbs
13895.8 g / 136.3 N
krytyczny poziom
5 mm 2438 Gs
243.8 mT
9.91 kg / 21.85 lbs
9912.0 g / 97.2 N
uwaga
10 mm 1497 Gs
149.7 mT
3.74 kg / 8.24 lbs
3739.6 g / 36.7 N
uwaga
15 mm 903 Gs
90.3 mT
1.36 kg / 3.00 lbs
1359.1 g / 13.3 N
słaby uchwyt
20 mm 560 Gs
56.0 mT
0.52 kg / 1.15 lbs
523.5 g / 5.1 N
słaby uchwyt
30 mm 245 Gs
24.5 mT
0.10 kg / 0.22 lbs
100.4 g / 1.0 N
słaby uchwyt
50 mm 71 Gs
7.1 mT
0.01 kg / 0.02 lbs
8.5 g / 0.1 N
słaby uchwyt

Tabela 2: Równoległa siła obsunięcia (pion)
MW 28.9x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
1 mm Stal (~0.2) 3.69 kg / 8.14 lbs
3694.0 g / 36.2 N
2 mm Stal (~0.2) 3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
3 mm Stal (~0.2) 2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
5 mm Stal (~0.2) 1.98 kg / 4.37 lbs
1982.0 g / 19.4 N
10 mm Stal (~0.2) 0.75 kg / 1.65 lbs
748.0 g / 7.3 N
15 mm Stal (~0.2) 0.27 kg / 0.60 lbs
272.0 g / 2.7 N
20 mm Stal (~0.2) 0.10 kg / 0.23 lbs
104.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 28.9x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
6.22 kg / 13.72 lbs
6222.0 g / 61.0 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
2.07 kg / 4.57 lbs
2074.0 g / 20.3 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
10.37 kg / 22.86 lbs
10370.0 g / 101.7 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 28.9x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.04 kg / 2.29 lbs
1037.0 g / 10.2 N
1 mm
13%
2.59 kg / 5.72 lbs
2592.5 g / 25.4 N
2 mm
25%
5.19 kg / 11.43 lbs
5185.0 g / 50.9 N
3 mm
38%
7.78 kg / 17.15 lbs
7777.5 g / 76.3 N
5 mm
63%
12.96 kg / 28.58 lbs
12962.5 g / 127.2 N
10 mm
100%
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
11 mm
100%
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
12 mm
100%
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N

Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 28.9x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
OK
40 °C -2.2% 20.28 kg / 44.72 lbs
20283.7 g / 199.0 N
OK
60 °C -4.4% 19.83 kg / 43.71 lbs
19827.4 g / 194.5 N
80 °C -6.6% 19.37 kg / 42.71 lbs
19371.2 g / 190.0 N
100 °C -28.8% 14.77 kg / 32.56 lbs
14766.9 g / 144.9 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 28.9x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 50.29 kg / 110.86 lbs
5 022 Gs
7.54 kg / 16.63 lbs
7543 g / 74.0 N
N/A
1 mm 47.58 kg / 104.90 lbs
6 860 Gs
7.14 kg / 15.74 lbs
7138 g / 70.0 N
42.83 kg / 94.41 lbs
~0 Gs
2 mm 44.77 kg / 98.71 lbs
6 655 Gs
6.72 kg / 14.81 lbs
6716 g / 65.9 N
40.30 kg / 88.84 lbs
~0 Gs
3 mm 41.95 kg / 92.48 lbs
6 441 Gs
6.29 kg / 13.87 lbs
6292 g / 61.7 N
37.75 kg / 83.23 lbs
~0 Gs
5 mm 36.38 kg / 80.20 lbs
5 999 Gs
5.46 kg / 12.03 lbs
5457 g / 53.5 N
32.74 kg / 72.18 lbs
~0 Gs
10 mm 24.03 kg / 52.98 lbs
4 876 Gs
3.60 kg / 7.95 lbs
3605 g / 35.4 N
21.63 kg / 47.69 lbs
~0 Gs
20 mm 9.07 kg / 19.99 lbs
2 995 Gs
1.36 kg / 3.00 lbs
1360 g / 13.3 N
8.16 kg / 17.99 lbs
~0 Gs
50 mm 0.53 kg / 1.17 lbs
726 Gs
0.08 kg / 0.18 lbs
80 g / 0.8 N
0.48 kg / 1.06 lbs
~0 Gs
60 mm 0.24 kg / 0.54 lbs
491 Gs
0.04 kg / 0.08 lbs
37 g / 0.4 N
0.22 kg / 0.48 lbs
~0 Gs
70 mm 0.12 kg / 0.26 lbs
345 Gs
0.02 kg / 0.04 lbs
18 g / 0.2 N
0.11 kg / 0.24 lbs
~0 Gs
80 mm 0.06 kg / 0.14 lbs
250 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
90 mm 0.04 kg / 0.08 lbs
187 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
143 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs

Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 28.9x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 13.5 cm
Implant słuchowy 10 Gs (1.0 mT) 10.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 8.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 6.5 cm
Pilot do auta 50 Gs (5.0 mT) 6.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 28.9x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.92 km/h
(6.37 m/s)
1.00 J
30 mm 35.97 km/h
(9.99 m/s)
2.46 J
50 mm 46.31 km/h
(12.86 m/s)
4.07 J
100 mm 65.48 km/h
(18.19 m/s)
8.14 J

Tabela 9: Parametry powłoki (trwałość)
MW 28.9x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MW 28.9x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 24 347 Mx 243.5 µWb
Współczynnik Pc 0.45 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 28.9x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 20.74 kg Standard
Woda (dno rzeki) 23.75 kg
(+3.01 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Udźwig w pionie

*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% nominalnego udźwigu.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Stabilność termiczna

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010051-2026
Kalkulator miar
Udźwig magnesu

Moc pola

Inne propozycje

Prezentowany produkt to ekstremalnie mocny magnes w kształcie walca, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø28.9x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 28.9x10 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 20.74 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w modelarstwie, zaawansowanej robotyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki dużej mocy 203.46 N przy wadze zaledwie 49.2 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø28.9x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø28.9x10 mm, co przy wadze 49.2 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 20.74 kg (siła ~203.46 N), co przy tak określonych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 10 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów neodymowych Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne kluczowe cechy, takie jak::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
  • Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
  • Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
  • Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.

Słabe strony

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Parametry udźwigu

Maksymalna siła przyciągania magnesuco się na to składa?

Parametr siły jest wynikiem testu laboratoryjnego wykonanego w warunkach wzorcowych:
  • na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
  • o przekroju nie mniejszej niż 10 mm
  • charakteryzującej się gładkością
  • bez najmniejszej szczeliny pomiędzy magnesem a stalą
  • dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
  • przy temperaturze pokojowej

Wpływ czynników na nośność magnesu w praktyce

Na skuteczność trzymania mają wpływ parametry środowiska pracy, głównie (od najważniejszych):
  • Odstęp (między magnesem a blachą), bowiem nawet bardzo mała przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
  • Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
  • Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
  • Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza nośność.

Środki ostrożności podczas pracy z magnesami neodymowymi
Bezpieczna praca

Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.

Alergia na nikiel

Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.

Nie przegrzewaj magnesów

Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).

Niebezpieczeństwo dla rozruszników

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Podatność na pękanie

Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.

Zagrożenie wybuchem pyłu

Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.

Poważne obrażenia

Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.

Ochrona urządzeń

Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.

Zagrożenie dla nawigacji

Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.

Zagrożenie dla najmłodszych

Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.

Zagrożenie! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98