MW 25x2.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010449
GTIN/EAN: 5906301811121
Średnica Ø
25 mm [±0,1 mm]
Wysokość
2.5 mm [±0,1 mm]
Waga
9.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.55 kg / 25.03 N
Indukcja magnetyczna
121.57 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
3.95 ZŁ z VAT / szt. + cena za transport
3.21 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie daj znać poprzez
nasz formularz online
przez naszą stronę.
Parametry a także wygląd magnesu neodymowego testujesz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 25x2.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x2.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010449 |
| GTIN/EAN | 5906301811121 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 2.5 mm [±0,1 mm] |
| Waga | 9.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.55 kg / 25.03 N |
| Indukcja magnetyczna ~ ? | 121.57 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe informacje są bezpośredni efekt analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 25x2.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
2.55 kg / 2550.0 g
25.0 N
|
mocny |
| 1 mm |
1177 Gs
117.7 mT
|
2.39 kg / 2391.6 g
23.5 N
|
mocny |
| 2 mm |
1121 Gs
112.1 mT
|
2.17 kg / 2166.6 g
21.3 N
|
mocny |
| 3 mm |
1050 Gs
105.0 mT
|
1.90 kg / 1902.7 g
18.7 N
|
słaby uchwyt |
| 5 mm |
887 Gs
88.7 mT
|
1.36 kg / 1358.4 g
13.3 N
|
słaby uchwyt |
| 10 mm |
511 Gs
51.1 mT
|
0.45 kg / 450.5 g
4.4 N
|
słaby uchwyt |
| 15 mm |
282 Gs
28.2 mT
|
0.14 kg / 137.4 g
1.3 N
|
słaby uchwyt |
| 20 mm |
162 Gs
16.2 mT
|
0.05 kg / 45.4 g
0.4 N
|
słaby uchwyt |
| 30 mm |
64 Gs
6.4 mT
|
0.01 kg / 7.0 g
0.1 N
|
słaby uchwyt |
| 50 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.5 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 25x2.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.51 kg / 510.0 g
5.0 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 478.0 g
4.7 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 272.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 25x2.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.76 kg / 765.0 g
7.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.51 kg / 510.0 g
5.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 255.0 g
2.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.28 kg / 1275.0 g
12.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 25x2.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 255.0 g
2.5 N
|
| 1 mm |
|
0.64 kg / 637.5 g
6.3 N
|
| 2 mm |
|
1.28 kg / 1275.0 g
12.5 N
|
| 5 mm |
|
2.55 kg / 2550.0 g
25.0 N
|
| 10 mm |
|
2.55 kg / 2550.0 g
25.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 25x2.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.55 kg / 2550.0 g
25.0 N
|
OK |
| 40 °C | -2.2% |
2.49 kg / 2493.9 g
24.5 N
|
OK |
| 60 °C | -4.4% |
2.44 kg / 2437.8 g
23.9 N
|
|
| 80 °C | -6.6% |
2.38 kg / 2381.7 g
23.4 N
|
|
| 100 °C | -28.8% |
1.82 kg / 1815.6 g
17.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 25x2.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.47 kg / 4472 g
43.9 N
2 302 Gs
|
N/A |
| 1 mm |
4.35 kg / 4351 g
42.7 N
2 398 Gs
|
3.92 kg / 3916 g
38.4 N
~0 Gs
|
| 2 mm |
4.19 kg / 4194 g
41.1 N
2 355 Gs
|
3.77 kg / 3775 g
37.0 N
~0 Gs
|
| 3 mm |
4.01 kg / 4009 g
39.3 N
2 302 Gs
|
3.61 kg / 3608 g
35.4 N
~0 Gs
|
| 5 mm |
3.57 kg / 3574 g
35.1 N
2 173 Gs
|
3.22 kg / 3216 g
31.6 N
~0 Gs
|
| 10 mm |
2.38 kg / 2382 g
23.4 N
1 775 Gs
|
2.14 kg / 2144 g
21.0 N
~0 Gs
|
| 20 mm |
0.79 kg / 790 g
7.8 N
1 022 Gs
|
0.71 kg / 711 g
7.0 N
~0 Gs
|
| 50 mm |
0.03 kg / 30 g
0.3 N
198 Gs
|
0.03 kg / 27 g
0.3 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 25x2.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 25x2.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.55 km/h
(5.15 m/s)
|
0.12 J | |
| 30 mm |
29.13 km/h
(8.09 m/s)
|
0.30 J | |
| 50 mm |
37.55 km/h
(10.43 m/s)
|
0.50 J | |
| 100 mm |
53.10 km/h
(14.75 m/s)
|
1.00 J |
Tabela 9: Parametry powłoki (trwałość)
MW 25x2.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 25x2.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 872 Mx | 78.7 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 25x2.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.55 kg | Standard |
| Woda (dno rzeki) |
2.92 kg
(+0.37 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – obecność jakiejkolwiek warstwy (farba, taśma, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Tylko dla dorosłych
Te produkty magnetyczne nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Zagrożenie wybuchem pyłu
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Bezpieczny dystans
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Nie lekceważ mocy
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nadwrażliwość na metale
Niektóre osoby ma alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Wskazane jest używanie rękawiczek ochronnych.
