MW 18.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010036
GTIN/EAN: 5906301810353
Średnica Ø
18.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
21.04 g
Kierunek magnesowania
→ diametralny
Udźwig
11.68 kg / 114.54 N
Indukcja magnetyczna
450.35 mT / 4503 Gs
Powłoka
[NiCuNi] nikiel
11.07 ZŁ z VAT / szt. + cena za transport
9.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz za pomocą
formularz
przez naszą stronę.
Siłę oraz formę elementów magnetycznych zweryfikujesz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 18.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010036 |
| GTIN/EAN | 5906301810353 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 21.04 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 11.68 kg / 114.54 N |
| Indukcja magnetyczna ~ ? | 450.35 mT / 4503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Niniejsze informacje są wynik kalkulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 18.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4502 Gs
450.2 mT
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
niebezpieczny! |
| 1 mm |
4050 Gs
405.0 mT
|
9.46 kg / 20.85 lbs
9455.2 g / 92.8 N
|
średnie ryzyko |
| 2 mm |
3587 Gs
358.7 mT
|
7.42 kg / 16.35 lbs
7416.3 g / 72.8 N
|
średnie ryzyko |
| 3 mm |
3139 Gs
313.9 mT
|
5.68 kg / 12.52 lbs
5678.8 g / 55.7 N
|
średnie ryzyko |
| 5 mm |
2346 Gs
234.6 mT
|
3.17 kg / 6.99 lbs
3172.5 g / 31.1 N
|
średnie ryzyko |
| 10 mm |
1100 Gs
110.0 mT
|
0.70 kg / 1.54 lbs
696.7 g / 6.8 N
|
bezpieczny |
| 15 mm |
554 Gs
55.4 mT
|
0.18 kg / 0.39 lbs
176.7 g / 1.7 N
|
bezpieczny |
| 20 mm |
308 Gs
30.8 mT
|
0.05 kg / 0.12 lbs
54.6 g / 0.5 N
|
bezpieczny |
| 30 mm |
120 Gs
12.0 mT
|
0.01 kg / 0.02 lbs
8.3 g / 0.1 N
|
bezpieczny |
| 50 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 18.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| 1 mm | Stal (~0.2) |
1.89 kg / 4.17 lbs
1892.0 g / 18.6 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.27 lbs
1484.0 g / 14.6 N
|
| 3 mm | Stal (~0.2) |
1.14 kg / 2.50 lbs
1136.0 g / 11.1 N
|
| 5 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 18.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.50 kg / 7.72 lbs
3504.0 g / 34.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.84 kg / 12.87 lbs
5840.0 g / 57.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 18.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 1.29 lbs
584.0 g / 5.7 N
|
| 1 mm |
|
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 2 mm |
|
2.92 kg / 6.44 lbs
2920.0 g / 28.6 N
|
| 3 mm |
|
4.38 kg / 9.66 lbs
4380.0 g / 43.0 N
|
| 5 mm |
|
7.30 kg / 16.09 lbs
7300.0 g / 71.6 N
|
| 10 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 11 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 12 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 18.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
OK |
| 40 °C | -2.2% |
11.42 kg / 25.18 lbs
11423.0 g / 112.1 N
|
OK |
| 60 °C | -4.4% |
11.17 kg / 24.62 lbs
11166.1 g / 109.5 N
|
OK |
| 80 °C | -6.6% |
10.91 kg / 24.05 lbs
10909.1 g / 107.0 N
|
|
| 100 °C | -28.8% |
8.32 kg / 18.33 lbs
8316.2 g / 81.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 18.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
35.05 kg / 77.28 lbs
5 600 Gs
|
5.26 kg / 11.59 lbs
5258 g / 51.6 N
|
N/A |
| 1 mm |
31.70 kg / 69.88 lbs
8 562 Gs
|
4.75 kg / 10.48 lbs
4754 g / 46.6 N
|
28.53 kg / 62.89 lbs
~0 Gs
|
| 2 mm |
28.38 kg / 62.56 lbs
8 101 Gs
|
4.26 kg / 9.38 lbs
4256 g / 41.8 N
|
25.54 kg / 56.30 lbs
~0 Gs
|
| 3 mm |
25.22 kg / 55.59 lbs
7 636 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 5 mm |
19.53 kg / 43.05 lbs
6 720 Gs
|
2.93 kg / 6.46 lbs
2929 g / 28.7 N
|
17.57 kg / 38.75 lbs
~0 Gs
|
| 10 mm |
9.52 kg / 20.99 lbs
4 692 Gs
|
1.43 kg / 3.15 lbs
1428 g / 14.0 N
|
8.57 kg / 18.89 lbs
~0 Gs
|
| 20 mm |
2.09 kg / 4.61 lbs
2 199 Gs
|
0.31 kg / 0.69 lbs
314 g / 3.1 N
|
1.88 kg / 4.15 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
372 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
241 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
164 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
116 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 18.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 18.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.63 km/h
(6.84 m/s)
|
0.49 J | |
| 30 mm |
41.18 km/h
(11.44 m/s)
|
1.38 J | |
| 50 mm |
53.13 km/h
(14.76 m/s)
|
2.29 J | |
| 100 mm |
75.14 km/h
(20.87 m/s)
|
4.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 18.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 18.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 18.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.68 kg | Standard |
| Woda (dno rzeki) |
13.37 kg
(+1.69 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- przy całkowitym braku odstępu (brak farby)
- przy osiowym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Łatwopalność
Pył powstający podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nośniki danych
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ryzyko uczulenia
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Rozruszniki serca
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Moc przyciągania
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
