MW 18.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010036
GTIN/EAN: 5906301810353
Średnica Ø
18.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
21.04 g
Kierunek magnesowania
→ diametralny
Udźwig
11.68 kg / 114.54 N
Indukcja magnetyczna
450.35 mT / 4503 Gs
Powłoka
[NiCuNi] nikiel
11.07 ZŁ z VAT / szt. + cena za transport
9.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub napisz korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig oraz formę magnesu obliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 18.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010036 |
| GTIN/EAN | 5906301810353 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 21.04 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 11.68 kg / 114.54 N |
| Indukcja magnetyczna ~ ? | 450.35 mT / 4503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe wartości stanowią rezultat symulacji fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 18.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4502 Gs
450.2 mT
|
11.68 kg / 11680.0 g
114.6 N
|
krytyczny poziom |
| 1 mm |
4050 Gs
405.0 mT
|
9.46 kg / 9455.2 g
92.8 N
|
mocny |
| 2 mm |
3587 Gs
358.7 mT
|
7.42 kg / 7416.3 g
72.8 N
|
mocny |
| 3 mm |
3139 Gs
313.9 mT
|
5.68 kg / 5678.8 g
55.7 N
|
mocny |
| 5 mm |
2346 Gs
234.6 mT
|
3.17 kg / 3172.5 g
31.1 N
|
mocny |
| 10 mm |
1100 Gs
110.0 mT
|
0.70 kg / 696.7 g
6.8 N
|
niskie ryzyko |
| 15 mm |
554 Gs
55.4 mT
|
0.18 kg / 176.7 g
1.7 N
|
niskie ryzyko |
| 20 mm |
308 Gs
30.8 mT
|
0.05 kg / 54.6 g
0.5 N
|
niskie ryzyko |
| 30 mm |
120 Gs
12.0 mT
|
0.01 kg / 8.3 g
0.1 N
|
niskie ryzyko |
| 50 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.6 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 18.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.34 kg / 2336.0 g
22.9 N
|
| 1 mm | Stal (~0.2) |
1.89 kg / 1892.0 g
18.6 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 1484.0 g
14.6 N
|
| 3 mm | Stal (~0.2) |
1.14 kg / 1136.0 g
11.1 N
|
| 5 mm | Stal (~0.2) |
0.63 kg / 634.0 g
6.2 N
|
| 10 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 18.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.50 kg / 3504.0 g
34.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.34 kg / 2336.0 g
22.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.17 kg / 1168.0 g
11.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.84 kg / 5840.0 g
57.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 18.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 584.0 g
5.7 N
|
| 1 mm |
|
1.46 kg / 1460.0 g
14.3 N
|
| 2 mm |
|
2.92 kg / 2920.0 g
28.6 N
|
| 5 mm |
|
7.30 kg / 7300.0 g
71.6 N
|
| 10 mm |
|
11.68 kg / 11680.0 g
114.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 18.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.68 kg / 11680.0 g
114.6 N
|
OK |
| 40 °C | -2.2% |
11.42 kg / 11423.0 g
112.1 N
|
OK |
| 60 °C | -4.4% |
11.17 kg / 11166.1 g
109.5 N
|
OK |
| 80 °C | -6.6% |
10.91 kg / 10909.1 g
107.0 N
|
|
| 100 °C | -28.8% |
8.32 kg / 8316.2 g
81.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 18.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
35.05 kg / 35053 g
343.9 N
5 600 Gs
|
N/A |
| 1 mm |
31.70 kg / 31696 g
310.9 N
8 562 Gs
|
28.53 kg / 28527 g
279.8 N
~0 Gs
|
| 2 mm |
28.38 kg / 28376 g
278.4 N
8 101 Gs
|
25.54 kg / 25538 g
250.5 N
~0 Gs
|
| 3 mm |
25.22 kg / 25216 g
247.4 N
7 636 Gs
|
22.69 kg / 22694 g
222.6 N
~0 Gs
|
| 5 mm |
19.53 kg / 19527 g
191.6 N
6 720 Gs
|
17.57 kg / 17575 g
172.4 N
~0 Gs
|
| 10 mm |
9.52 kg / 9521 g
93.4 N
4 692 Gs
|
8.57 kg / 8569 g
84.1 N
~0 Gs
|
| 20 mm |
2.09 kg / 2091 g
20.5 N
2 199 Gs
|
1.88 kg / 1882 g
18.5 N
~0 Gs
|
| 50 mm |
0.06 kg / 60 g
0.6 N
372 Gs
|
0.05 kg / 54 g
0.5 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 18.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 18.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.63 km/h
(6.84 m/s)
|
0.49 J | |
| 30 mm |
41.18 km/h
(11.44 m/s)
|
1.38 J | |
| 50 mm |
53.13 km/h
(14.76 m/s)
|
2.29 J | |
| 100 mm |
75.14 km/h
(20.87 m/s)
|
4.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 18.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 18.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 18.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.68 kg | Standard |
| Woda (dno rzeki) |
13.37 kg
(+1.69 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Niklowa powłoka a alergia
Część populacji ma uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować wysypkę. Sugerujemy noszenie rękawiczek ochronnych.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Przegrzanie magnesu
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Samozapłon
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
